Question

A torsion pendulum is made from a disk of mass m = 5.7 kg and radius...

A torsion pendulum is made from a disk of mass m = 5.7 kg and radius R = 0.67 m. A force of F = 43 N exerted on the edge of the disk rotates the disk 1/4 of a revolution from equilibrium.


1. What is the torsion constant of this pendulum?


2. What is the minimum torque needed to rotate the pendulum a full revolution from equilibrium?


3. What is the angular frequency of oscillation of this torsion pendulum?



Homework Answers

Answer #1

1)the torsion constant of this pendulum

= 43 * 0.67 / (0.5* pi )

= 18.34 Nm/ rad ---answer


2)the minimum torque needed to rotate the pendulum a full revolution from equilibrium

= 18.34* 2 pi

= 115.24 Nm ---answer


3) moment of inertia

= 5.7 * 0.67^2 / 4

= 0.64

Torque = MoI * angular acc

115.24 = 0.64 * a

a= 180.06 rad /s2


s = ut + 0.5 at^2

2 pi = 0 + 0.5 * 180.06 * t^2

t = 0.264 s = period


angular frequency of oscillation of this torsion pendulum

= 1 / t = 3.79 Hz ---answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies...
A uniform disk with mass m = 9.07 kg and radius R = 1.36 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 313 N at the edge of the disk on the +x-axis, 2) a force 313 N at the edge of the disk on the –y-axis, and 3) a force 313 N acts at the edge of the disk at an angle θ =...
A disk with mass m = 6.3 kg and radius R = 0.46 m hangs from...
A disk with mass m = 6.3 kg and radius R = 0.46 m hangs from a rope attached to the ceiling. The disk spins on its axis at a distance r = 1.53 m from the rope and at a frequency f = 19.7 rev/s (with a direction shown by the arrow). 1) What is the magnitude of the angular momentum of the spinning disk? kg-m2/s 2) What is the torque due to gravity on the disk? N-m 3)...
A solid disk of mass m1 = 9 kg and radius R = 0.23 m is...
A solid disk of mass m1 = 9 kg and radius R = 0.23 m is rotating with a constant angular velocity of ω = 39 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.46 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 6) The rod took t = 5.4 s to accelerate to its final angular speed...
A uniform disk with mass m = 9.11 kg and radius R = 1.37 m lies...
A uniform disk with mass m = 9.11 kg and radius R = 1.37 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 319 N at the edge of the disk on the +x-axis, 2) a force 319 N at the edge of the disk on the –y-axis, and 3) a force 319 N acts at the edge of the disk at an angle θ =...
A solid disk of mass m1 = 9.8 kg and radius R = 0.25 m is...
A solid disk of mass m1 = 9.8 kg and radius R = 0.25 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.9 kg and length L = 2R = 0.5 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1)What is the initial angular momentum of the rod and disk system? 2)What is the...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.38 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1) What is the initial angular momentum of the rod and disk system? 2) What...
A penny is placed at the outer edge of a disk (radius = 0.134 m) that...
A penny is placed at the outer edge of a disk (radius = 0.134 m) that rotates about an axis perpendicular to the plane of the disk at its center. The period of the rotation is 1.86 s. Find the minimum coefficient of friction necessary to allow the penny to rotate along with the disk.
A playground ride consists of a disk of mass M = 43 kg and radius R...
A playground ride consists of a disk of mass M = 43 kg and radius R = 2.2 m mounted on a low-friction axle. A child of mass m = 29 kg runs at speed v = 2.1 m/s on a line tangential to the disk and jumps onto the outer edge of the disk. a) Calculate the change in linear momentum of the system consisting of the child plus the disk (but not including the axle), from just before...
A uniform disk with mass m = 8.63 kg and radius R = 1.38 m lies...
A uniform disk with mass m = 8.63 kg and radius R = 1.38 m lies in the x-y plane and centered at the origin. Three forces act in the +y-direction on the disk: 1) a force 347 N at the edge of the disk on the +x-axis, 2) a force 347 N at the edge of the disk on the
Disk A, with a mass of 2.0 kg and a radius of 90 cm , rotates...
Disk A, with a mass of 2.0 kg and a radius of 90 cm , rotates clockwise about a frictionless vertical axle at 40 rev/s . Disk B, also 2.0 kg but with a radius of 50 cm , rotates counterclockwise about that same axle, but at a greater height than disk A, at 40 rev/s . Disk B slides down the axle until it lands on top of disk A, after which they rotate together. After the collision, what...