Question

An object with moment of inertia ?1 = 9.7 ? 10−4 ?? ∙ ?2 rotates at...

An object with moment of inertia ?1 = 9.7 ? 10−4 ?? ∙ ?2 rotates at a speed of 3.0 ???/?. A 20 ? mass with moment of inertia ?2 = 1.32 ? 10−6 ?? ∙ ?2 is dropped onto the rotating object at a distance of 5.0 ?? from the center of mass. What is the angular velocity of the combined object and mass after the drop?

Homework Answers

Answer #1

Using Angular momentum conservation:

Li = Lf

Li = Angular momentum of system initially = I1*w1

I1 = Moment of inertia of object = 9.7*10^-4

w1 = Initial angular velocity of system = 3.0 rev/s

Lf = Angular momentum of system finally = I1 + I2 + m*r^2

I2 = Moment of inertia of mass = 1.32*10^-6

m = mass = 20 g = 0.020 kg

r = distance of mass from center of mass of odd shaped = 5.0 cm = 0.05 m

w2 = final Angular velocity of system = ?? rev/s

So,

I1*w1 = (I1 + I2 + m*r^2)*w2

9.7*10^-4*3 = (9.7*10^-4 + 1.32*10^-6 + 0.020*0.05^2)*w2

w2 = (3*9.7*10^-4)/(9.7*10^-4 + 1.32*10^-6 + 0.020*0.05^2)

w2 = 2.85 rev/sec = angular velocity of the combined object and mass after the drop

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object with moment of inertia ?1 = 9.7 ? 10−4 ?? ∙ ?2 rotates at...
An object with moment of inertia ?1 = 9.7 ? 10−4 ?? ∙ ?2 rotates at a speed of 3.0 ???/?. A 20 ? mass with moment of inertia ?2 = 1.32 ? 10−6 ?? ∙ ?2 is dropped onto the rotating object at a distance of 5.0 ?? from the center of mass. What is the angular velocity of the combined object and mass after the drop? Please don't forget to state the combined mass after the drop!!!
A disk with moment of inertia I 1 rotates about a frictionless , vertical axle with...
A disk with moment of inertia I 1 rotates about a frictionless , vertical axle with angular speed W 1 =12 rad/s . A second disk, this one having moment of inertia l 2 =2l 1 and initially not rotating , drops onto the first disk. Because of friction between the surfaces , the two eventually reach the same angular speed w 2 . What is the final angular velocity of the combined system (in kg m/s^ 2 )
A turntable has a moment of inertia of 3.00 × 10−2 kg · m2 and rotates...
A turntable has a moment of inertia of 3.00 × 10−2 kg · m2 and rotates freely on a frictionless support at 25.0 rev / min. A 0.600 kg putty ball is dropped vertically onto the turntable and glued at a point 0.100 m from the center. By what factor does the kinetic energy of the system change after the putty is dropped onto the turntable?   TO. 0.91   B. 1.00   C. 0.83   D. 1.50
A solid disk rotates in the horizontal plane at an angular velocity of .067rad/s with respect...
A solid disk rotates in the horizontal plane at an angular velocity of .067rad/s with respect to an axis perpendicular to the disk at its center. The moment of inertia of the disk is .10 kg*m2. From above, sand is dropped straight down onto this rotating disk, so that a think uniform ring has a mass of .5 kg. After all the sand is in place, what is the angular velocity of the disk?
A solid disk rotates in the horizontal plane at an angular velocity of 0.0663 rad/s with...
A solid disk rotates in the horizontal plane at an angular velocity of 0.0663 rad/s with respect to an axis perpendicular to the disk at its center. The moment of inertia of the disk is 0.162 kg·m2. From above, sand is dropped straight down onto this rotating disk, so that a thin uniform ring of sand is formed at a distance of 0.381 m from the axis. The sand in the ring has a mass of 0.497 kg. After all...
Moment of Inertia To find the moment of inertia of different objects and to observe the...
Moment of Inertia To find the moment of inertia of different objects and to observe the changes in angular acceleration relative to changing moments of inertia. To also learn how to use calipers in making precise measurements The momentum of inertia of an object is calculated as I=∑mr^2 If the object in question rotates around a central point, then it can be considered a "point mass", and its moment of inertia is simply,  I=mr^2 where r is from the central point...
A turntable has a moment of inertia of 3.0 × 10−2 kg·m2 and spins freely on...
A turntable has a moment of inertia of 3.0 × 10−2 kg·m2 and spins freely on a frictionless bearing at 25 rev/min. A 0.60-kg ball of putty is dropped vertically on the turntable and sticks at a point 0.10 m from the center. By what factor does the kinetic energy of the system change after the putty is dropped onto the turntable? a. 1.0 b. 0.83 c. 1.5 d. 0.91
A carousel has a radius of 3.0 m and a moment of inertia of 600 kg.m2....
A carousel has a radius of 3.0 m and a moment of inertia of 600 kg.m2. When a 20 kg child starts to move from the center of the carousel to the tip, the carousel rotates with an angular velocity of 0.80 rad / s. When the child reaches the end of the carousel, what is the angular velocity of the carousel?
A circular table rotates in the x - y plane. The table is the gray, solid...
A circular table rotates in the x - y plane. The table is the gray, solid cylinder. It has mass m and radius R. The axis of rotation is the z-axis. The direction of rotation is given by the arrow-heads. A hollow ring of mass to be specified and radius R/2 is held at rest, slightly above the table and dropped onto the rotating table. The center of the ring is exactly in-line with the table’s axis of rotation. There...
A circular table rotates in the x - y plane. The table is the gray, solid...
A circular table rotates in the x - y plane. The table is the gray, solid cylinder. It has mass m and radius R. The axis of rotation is the z-axis. The direction of rotation is given by the arrow-heads. A hollow ring of mass to be specified and radius R/2 is held at rest, slightly above the table and dropped onto the rotating table. The center of the ring is exactly in-line with the table’s axis of rotation. There...