Question

electron is moving towards south. as it moves thru magnetic field, electron curves upward toward ceiling...

electron is moving towards south. as it moves thru magnetic field, electron curves upward toward ceiling of lab. which direction is the magnetic field pointing?
choices:
east
downward
upward
west
north

if you hold a charge in each hand and let them go in space, what is the true regarding motion of smaller charge. select all that apply
it will move with decreasing acceleration
it will move with increasing acc
it will move with increasing speed
it will move with constant acceleration
it will move with decreasing speed

in space, you hold up proton and electron and let them go. which are true as they approach each other? select all that apply
electric potential energy keeps decreasing
electric potential energy keeps increasing
kinetic energy keeps increasing
kinetic energy keeps decreasing
acceleration keeps decreasing

pls answer all as they similar

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In space, you hold up a proton in each hand and let them go. Which of...
In space, you hold up a proton in each hand and let them go. Which of the following are true as they move apart from each other? (Choose all that apply.) Their acceleration keeps decreasing. Their electric potential energy keeps increasing. Their kinetic energy keeps decreasing. Their kinetic energy keeps increasing. Their electric potential energy keeps decreasing
An electron with kinetic energy 4.0 keV moves horizontally into a region of space in which...
An electron with kinetic energy 4.0 keV moves horizontally into a region of space in which there is a downward-directed electric field of magnitude 14 kV/m. (a) What are the magnitude and direction of the (smallest) magnetic field that will cause the electron to continue to move horizontally? Ignore the gravitational force, which is rather small. ______ (magnitude) Show all work
QUESTION When an electron is released from rest in a constant electric field, how does the...
QUESTION When an electron is released from rest in a constant electric field, how does the electric potential energy associated with the electron, and the kinetic energy of the electron, change with time? (Select all that apply.) options:The electric potential energy becomes more negative.The electric potential energy becomes more positive.The kinetic energy becomes more negative.The kinetic energy stays the same.The electric potential energy stays the same.The kinetic energy becomes more positive. Use the worked example above to help you solve...
A high-speed particle is moving 8.0x107 m/s in a uniform magnetic field of 3.0 T. The...
A high-speed particle is moving 8.0x107 m/s in a uniform magnetic field of 3.0 T. The particle's mass is 4.8x10-24 kg with a charge of 6.5x10-16 C. Please show your work. a.) Calculate the radius the particle is traveling? b.) In electron volts calculate Kinetic Energy? c.) What is the potential difference the particle accelerated due to its Kinetic Energy?
To practice Problem-Solving Strategy 21.1 Conservation of energy in charge interactions. An alpha particle (α), which...
To practice Problem-Solving Strategy 21.1 Conservation of energy in charge interactions. An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of −3.45×10−3 V . The charge and the mass of an alpha particle are qα = 3.20×10−19 C and mα = 6.68×10−27...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of −3.45×10−3 V .The charge and the mass of an alpha particle are qα = 3.20×10−19 C and mα = 6.68×10−27 kg , respectively. Part A Mechanical energy is conserved in the presence...
The electric potential in a region of space as a function of position x is given...
The electric potential in a region of space as a function of position x is given by the equation V(x) = αx2 + βx - γ, where α = 2V/m2, β = 7V/m, and γ = 15V. All nonelectrical forces are negligible. An electron starts at rest at x = 0 and travels to x = 20 m. Calculate the magnitude of the work done on the electron by the electric field during this process. Calculate the speed of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT