Question

Three moles of an ideal gas are expanded adiabatically. During this process, the temperature of the...

Three moles of an ideal gas are expanded adiabatically. During this process, the temperature of the gas decreases from T= 600K to T= 400K. Find the change in internal energy of gas.

Homework Answers

Answer #1

Moles of ideal gass n = 3

Specific heat ratio for ideal gas = 1.66

Ideal gas constant R = 8.314 J K−1 mol−1

T1 = 600 K, T2 = 400 K

In adiabatic expansion workdone is W = - nR (T1 -T2)/ ( - 1)

                                   W = - 3x8.314(600 - 400)/ (1.66 - 1) = - 7558.182 J

The workdone in adiabatic expansion (-W) = change in internal energy (dU)

dU = 7558.182 J

    

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. An ideal monatomic gas, with 24.05 moles, expands adiabatically from 0.500m^3 to 1.75 m^3. IF...
1. An ideal monatomic gas, with 24.05 moles, expands adiabatically from 0.500m^3 to 1.75 m^3. IF the initial pressure and temperature are 1.40x10^5 Pa and 350K, respectively, find the change in internal energy of the gas if the final temperature of the gas is 152K. 2. A fridge does 17.5 KJ of work while moving 120KJ of thermal energy from inside the fridge. Calculate the fridge's coefficient of performance.
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4×105Pa on the gas. The gas is cooled until its temperature has decreased to 27∘C. For the gas CV = 11.65 J/mol⋅K, and the ideal gas constant R = 8.314 J/mol⋅K. 1.Find the work done by the gas during this process. 2.What is the change in the internal (thermal) energy of...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature...
. A container has n = 3 moles of a monoatomic ideal gas at a temperature of 330 K and an initial pressure of three times the atmospheric pressure. The gas is taken through the following thermodynamic cycle: 1.- The gas is expanded isobarically (constant pressure) to Vf = 2.5∙Vi. 2.- The pressure of the gas is decreased isochorically (constant volume) to half of the initial value. 3.- The gas is compressed isobarically back to its initial volume. 4.- The...
During an adiabatic process, the temperature of 3.92 moles of a monatomic ideal gas drops from...
During an adiabatic process, the temperature of 3.92 moles of a monatomic ideal gas drops from 485 oC to 205 oC. For this gas, find (a) the work done by the system and (b) the net heat absorbed by the system.
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally...
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally from a volume of 1.23 L to a volume of 4.44 L. a) Sketch a P vs.V graph. b) Calculate the work done by the gas. c) Calculate the heat flow into or out of the gas. d) If the number of moles is doubled, by what factors do your answers to parts (b) and (c) change? Explain.
Three moles of an ideal gas are inside a 5.0 L chamber. 50.6 kJ of heat...
Three moles of an ideal gas are inside a 5.0 L chamber. 50.6 kJ of heat are added to the gas and, in the process, the pressure increases from 2.0 atm to 10.0 atm. (A) Find the initial and final temperatures of the gas (in both °C and K) (B) Find the change in internal energy of the gas
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
One mole of an ideal gas at 300 K is expanded adiabatically and reversibly from 20...
One mole of an ideal gas at 300 K is expanded adiabatically and reversibly from 20 atm to 1 atm. What is the final temperature of the gas, assuming Cv= 3/2R. Question 1 options: a) 400 K b) 250 K c)156 K d)90.5 K
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the volume of the gas changes from 3.30*10^-2m^3 to 4.50*10^-2m^3. Part A, Calculate the initial temperature of the gas. Part B, Calculate the final temperature of the gas. Part C, Calculate the amount of work the gas does in expanding. Part D, Calculate the amount of heat added to the gas. Part E, Calculate the change in internal energy of the gas.
An ideal gas is brought through an isothermal compression process. The 2.00 moles of gas go...
An ideal gas is brought through an isothermal compression process. The 2.00 moles of gas go from having an initial volume of 219.8 cm3 to 120.5 cm3. If 2182 cal are released by the gas during this process, what are the temperature T of the gas and the final pressure pf?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT