Question

A triply ionized beryllium atom is in the ground state. It absorbs energy and makes a...

A triply ionized beryllium atom is in the ground state. It absorbs energy and makes a transition to the n = 7 excited state. The ion returns to the ground state by emitting SIX photons ONLY. What is the wavelength of the second highest energy photon?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A singly ionized helium atom is in the ground state. It absorbs energy and makes a...
A singly ionized helium atom is in the ground state. It absorbs energy and makes a transition to the n = 6 excited state. The ion returns to the ground state by emitting FIVE photons ONLY. What is the wavelength of the second highest energy photon?
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to...
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to the n = 6 excited state. The atom returns to the ground state by emitting two photons, one in dropping to n = 5 state, and one in further dropping to the ground state. What are the photon wavelengths of (a) the first and (b) the second transitions?
Find the energy of a triply ionized beryllium atom, whose electron is in the following state:...
Find the energy of a triply ionized beryllium atom, whose electron is in the following state: n = 5.
A triply ionized beryllium atom has an electron in the n = 4 state. What is...
A triply ionized beryllium atom has an electron in the n = 4 state. What is the electric potential energy of the electron?
A triply ionized beryllium atom has an electron in the n = 3 state. What is...
A triply ionized beryllium atom has an electron in the n = 3 state. What is the electric potential energy of the electron? Answer is not 48.356 eV
Calculate the deBroglie wavelength of the electron in a triply ionized beryllium atom when it is...
Calculate the deBroglie wavelength of the electron in a triply ionized beryllium atom when it is orbiting in the following state: n = 5.
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm....
4 a) A hydrogen atom in the ground state absorbs a photon of wavelength 97.2 nm. What energy level does the electron reach? b) This excited atom then emits a photon of wavelength 1875.4 nm. What energy level does the electron fall to?
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Calculate the second shortest wavelength emitted.
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The...
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Answer: (number) ___________ (b) Calculate the longest wavelength emitted. Answer: _________
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy...
A hydrogen atom in the ground state absorbs a photon of wavelength 95.0 nm. What energy level does the electron reach? This excited atom then emits a photon of wavelength 434.1 nm. What energy level does the electron fall to? -I know this question has already been asked on Chegg but each question I go to has different calculations and I can't get the right answer.