Question

A disk (mass of 3 kg, radius 30 cm) is rotating with an angular velocity w1=...

A disk (mass of 3 kg, radius 30 cm) is rotating with an angular velocity w1= 5 rad/s. A second disk (mass 2kg, radius 15cm), which is rotating at w= -7 rad/s is dropped on top of the first disk. The disks are dropped so that they share a rotational axis, and they stick together. The moment of inertia of a disk is 1/2mr^2. What is the final angular speed of the two disks?

Homework Answers

Answer #1

Moment of inertia of first disk,

  

Moment of inertia of second disk,

  

Since both disks are rotating at a constant angular velocity, the net external torque on thee system is 0.

By the law of conservation of angular momentum, Lfinal = Linitial

Let the final angular velocity of the combined system be

Since the disks share a roational axis, the final moment of inertia of the system will be a sum of the individual Moment of Inertias of the disks.

Hence,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 6 kg · m2 and an angular velocity of +10 rad/s. Disk B is rotating with an angular velocity of –4 rad/s and has a moment of inertia of 4kgm2. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit. The axis of rotation for this unit is the same as that...
A 3 kg disk of radius 0.25 m is rotating freely at an angular speed of...
A 3 kg disk of radius 0.25 m is rotating freely at an angular speed of 100 rad/s on a shaft passing through the center if mass of the disk. A 2 kg solid ball of the same radius, initially not rotating, slides down the shaft (the shaft passes through the ball's center of mass) and is coupled to the disk. Assuming that the rotational inertia is of the shaft is negligible, a) what is the angular speed of the...
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.1 kg · m2 and an angular velocity of +8.0 rad/s. Disk B is rotating with an angular velocity of -9.3 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.2 rad/s. The axis of rotation for this unit is the same as that for...
Two disks are rotating about the same axis. Disk A has a moment of inertia of...
Two disks are rotating about the same axis. Disk A has a moment of inertia of 3.7 kg · m2 and an angular velocity of +7.7 rad/s. Disk B is rotating with an angular velocity of -10.4 rad/s. The two disks are then linked together without the aid of any external torques, so that they rotate as a single unit with an angular velocity of -2.5 rad/s. The axis of rotation for this unit is the same as that for...
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a...
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a small block of mass mblock = 2.2 kg on its rim. It rotates about an axis a distance d = 0.16 m from its center intersecting the disk along the radius on which the block is situated. What is the moment of inertia of the block about the rotation axis? What is the moment of inertia of the disk about the rotation axis? When...
A uniform disk A of mass mA= 8.2 kg turns at ωA=+50 rad/s about a fixed...
A uniform disk A of mass mA= 8.2 kg turns at ωA=+50 rad/s about a fixed central axis. Another rotating disk B of mass mB= 10.5 kg, with the same radius R of disk A, is dropped onto the freely spinning disk A (see figure). They become coupled and turn together with their centers superposed, as shown in the figure, with an angular velocity ω'=+33 rad/s. (The moment of inertia of the disk is  Id = [ 1/2]mR2, where m is...
(1 point) A circular disk of mass 0.2 kg and radius 27 cm, initially not rotating,...
(1 point) A circular disk of mass 0.2 kg and radius 27 cm, initially not rotating, slips down a thin spindle onto a turntable (disk) of mass 1.9 kg and the same radius, rotating freely at 3.1 rad/s. a) Find the new angular velocity of the combination; rad/s b) The change in the kinetic energy? J c) If the motor is switched on after the disk has landed, what is the constant torque needed to regain the original speed in...
A cylinder of radius R = 50 cm has rotational inertia I. It is rotating with...
A cylinder of radius R = 50 cm has rotational inertia I. It is rotating with angular velocity w = 2 rad / s. A bullet of mass m = 160 grams and speed v = 1500 m / s hits the cylinder at a distance 40 cm from its axis and remains there. Both the cylinder and the bullet stop after collision. Find I in units of kg - m2.
A solid disk rotates in the horizontal plane at an angular velocity of 0.0663 rad/s with...
A solid disk rotates in the horizontal plane at an angular velocity of 0.0663 rad/s with respect to an axis perpendicular to the disk at its center. The moment of inertia of the disk is 0.162 kg·m2. From above, sand is dropped straight down onto this rotating disk, so that a thin uniform ring of sand is formed at a distance of 0.381 m from the axis. The sand in the ring has a mass of 0.497 kg. After all...
QUESTION 27 A uniform disk of radius 0.40 m and mass 31.0 kg rolls on a...
QUESTION 27 A uniform disk of radius 0.40 m and mass 31.0 kg rolls on a plane without slipping with angular speed 3.0 rad/s. The rotational kinetic energy of the disk is __________. The moment of inertia of the disk is given by 0.5MR2.