Question

Suppose the electric field between the electric plates in the mass spectrometer of (Figure 1) is...

Suppose the electric field between the electric plates in the mass spectrometer of (Figure 1) is 3.18×104V/m3.18×104V/m and the magnetic fields B=B′=0.77TB=B′=0.77T. The source contains carbon isotopes of mass numbers 12, 13, and 14 from a long-dead piece of a tree. (To estimate atomic masses, multiply by 1.67 ×10−27kg×10−27kg.)

How far apart are the lines formed by the singly charged ions of mass numbers 12 and 13 on the photographic film?

How far apart are the lines formed by the singly charged ions of mass numbers 13 and 14 on the photographic film?

What if the ions were doubly charged?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose the electric field between the electric plates in the mass spectrometer of Figure 27-33 in...
Suppose the electric field between the electric plates in the mass spectrometer of Figure 27-33 in the textbook is 2.23×104 V/m and the magnetic fields are B=B′=0.38T. The source contains carbon isotopes of mass numbers 12, 13, and 14 from a long dead piece of a tree. (To estimate atomic masses, multiply by 1.66×10−27kg.) How far apart are the lines formed by the singly charged ions of each type on the photographic film ( d12−13, d13−14)? What if the ions...
A mass spectrometer is used to examine the isotopes of uranium. Ions in the beam emerge...
A mass spectrometer is used to examine the isotopes of uranium. Ions in the beam emerge from the velocity selector at a speed of 2.92 ✕ 105 m/s and enter a uniform magnetic field of 0.605 T directed perpendicularly to the velocity of the ions. What is the distance between the impact points formed on the photographic plate by singly charged ions of 235U and 238U? cm
You have a Bainbridge Mass Spectrometer with an electric field in the velocity selector of 1.20...
You have a Bainbridge Mass Spectrometer with an electric field in the velocity selector of 1.20 x 105 V/m and a magnetic field in both regions of 0.600 T. A stream of singly charged ions from a pure source (i.e.-all the atoms are the same type of element) move in a semicircular arc and strike the recording plate 1.46 m from the opening in the magnetic field chamber. Determine the mass of the ions. Given the fact that the mass...
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field...
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field between the plates of the velocity selector is 2.60  103 V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of 0.0300 T. Calculate the radius of the path for a singly charged ion having a mass m = 2.48  10-26 kg
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field...
Consider the mass spectrometer shown schematically in the figure below. The magnitude of the electric field between the plates of the velocity selector is  2.40 * 10 3  V/m, and the magnetic field in both the velocity selector and the deflection chamber has a magnitude of 0.0400 T. Calculate the radius of the path for a singly charged ion having a mass m= 6.34  * 10 -26 kg. a. 0.718 b. 0.236 c. None of the given answers d. 0.401 e. 0.594
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT