Question

A spring with a mass 4 kg and spring constant 3000 N/m has a velocity of...

A spring with a mass 4 kg and spring constant 3000 N/m has a velocity of 12m/s at x=0.6m.

a. what is the amplitude of this oscillator?

b. what is the energy and maximum velocity of this oscillator?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
#1: A mass of 6 kg is attached to a spring with k = 1500 N/m....
#1: A mass of 6 kg is attached to a spring with k = 1500 N/m. It is stretched a distance of 0.5 m and is released so that it oscillates in simple harmonic motion. A) What is the frequency? B) What is the energy of the oscillator? C) What is the maximum velocity for the oscillator? #2:  When at x = 0.3 m a simple harmonic oscillator (k = 2000 N/m and m = 2 kg) has a velocity of...
A mass of 1.79 kg is placed on a spring with spring constant of 280 N/m....
A mass of 1.79 kg is placed on a spring with spring constant of 280 N/m. After being pulled to its positive amplitude position and released, the resulting simple harmonic motion has a maximum velocity of 1.126 m/s. (a) Calculate the angular frequency of the oscillation.   rad/s (b) Calculate the minimum time elapsed for the mass to reach the 0.044 m position (distance from the equilibrium position).    s (c) Calculate the velocity of the mass at the time found in part (b).    m/s
An undamped 1.21 kg horizontal spring oscillator has a spring constant of 34.5 N/m. While oscillating,...
An undamped 1.21 kg horizontal spring oscillator has a spring constant of 34.5 N/m. While oscillating, it is found to have a speed of 2.43 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? What is the oscillator\'s total mechanical energy as it passes through a position that is 0.675 of the amplitude away from the equilibrium position?
A 0.5 kg mass is connected to a spring with a spring constant of 20 N/m....
A 0.5 kg mass is connected to a spring with a spring constant of 20 N/m. The system undergoes SHM with an amplitude of 0.05 m. a)What is the mechanical energy of the system? b)What is ?? c) What is the maximum speed possible? d)What is the speed when ? = 0.02 ?? e)What is the speed when ? = 0.06 ??
An undamped 1.55 kg horizontal spring oscillator has a spring constant of 32.6 N/m. While oscillating,...
An undamped 1.55 kg horizontal spring oscillator has a spring constant of 32.6 N/m. While oscillating, it is found to have a speed of 2.31 m/s as it passes through its equilibrium position. What is its amplitude ? of oscillation? What is the oscillator's total mechanical energy ?tot as it passes through a position that is 0.615 of the amplitude away from the equilibrium position?
A simple harmonic oscillator has a mass of 1.4 kg, a maximum speed of 0.55 m/s,...
A simple harmonic oscillator has a mass of 1.4 kg, a maximum speed of 0.55 m/s, and a spring constant of 20.5 N/m. Use Conservation of Energy to find the amplitude of the system. Assume that there are no frictional losses.
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring of spring constant 410 N/m. When t = 1.60 s, the position and velocity of the block are x = 0.102 m and v = 3.050 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.00 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.00 kg attached to a spring of spring constant 110 N/m. When t = 2.30 s, the position and velocity of the block are x = 0.127 m and v = 3.580 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 2.90 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 2.90 kg attached to a spring of spring constant 280 N/m. When t = 2.20 s, the position and velocity of the block are x = 0.189 m and v = 3.000 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring of spring constant 340 N/m. When t = 0.840 s, the position and velocity of the block are x = 0.101 m and v = 3.100 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?