Question

A uniform, 1.0 m radius, 50.0 kg circular wheel (ICM=M R2) spinning at 120 rev/min is...

A uniform, 1.0 m radius, 50.0 kg circular wheel (ICM=M R2) spinning at 120 rev/min is subjected to a variable frictional force F(t) = 20.0[1 - (t/ )2] (in Newtons) applied tangentially at its rim. If the wheel has to stop rotating exactly at the moment the force becomes zero, the value of  must be

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A potters wheel-a thick stone disk radius 0.500 m and mass 125 kg-is freely rotating at...
A potters wheel-a thick stone disk radius 0.500 m and mass 125 kg-is freely rotating at 50.0 rev/min. The potter can stop the wheel in 6.00 s by pressing a wet rag against the rim and exerting a radially inward force of 68.0 N. Find the effective coefficient of kinetic friction between the wheel and rag.
A potter’s wheel, a thick stone disk of radius 0.500 m and mass 100 kg, is...
A potter’s wheel, a thick stone disk of radius 0.500 m and mass 100 kg, is freely rotating at 70.0 rev/min. The potter can stop the wheel by pressing a wet rag against the rim and exerting a radially inward force of 35.0 N. If the applied force slows the wheel down with an angular acceleration of 0.875rad/s2 , calculate the torque acting on the wheel and the coefficient of kinetic friction between the wheel and the rag
A bicycle wheel, of radius 0.3100 m and mass 2.000 kg (concentrated on the rim), is...
A bicycle wheel, of radius 0.3100 m and mass 2.000 kg (concentrated on the rim), is rotating at 4.110 rev/s. After 41.00 s the wheel comes to a stop because of friction. What is the magnitude of the average torque due to frictional forces? N · m
A 50.0-kg grindstone is a solid disk 0.510 m in diameter. You press an ax down...
A 50.0-kg grindstone is a solid disk 0.510 m in diameter. You press an ax down on the rim with a normal force of 180 N . The coefficient of kinetic friction between the blade and the stone is 0.60, and there is a constant friction torque of 6.50N?m between the axle of the stone and its bearings. A)How much force must be applied tangentially at the end of a crank handle 0.500 m long to bring the stone from...
3. A flywheel comprises a uniform circular disk with a mass of 112.0 kg and a...
3. A flywheel comprises a uniform circular disk with a mass of 112.0 kg and a radius of 1.3 m. It rotates with an angular velocity of 1213 rev/min. A constant tangential force is applied at a radial distance of 0.8 m. What is the initial kinetic energy of the wheel? 4. If the wheel is brought to rest in 111.0 s, what is the tangential force? 5. How many revolutions does the flywheel make while it is stopping in...
Point Pis on the rim of a large Spinning Disk of mass 10.0 kg and radius...
Point Pis on the rim of a large Spinning Disk of mass 10.0 kg and radius 2.58 m. At time t=0.00 s the disk has an angular velocity of 4.00 rad/s and rotates counterclockwise about its center O, and Pis on the x-axis. A net applied CW torque of 20.0 m-N causes the wheel to undergo a uniform angular acceleration. The magnitude of the total acceleration (m/s2) at point Pwhen t = 15.0 s is? The angular velocity of the...
Part A) A potter's wheel—a thick stone disk of radius 0.400 m and mass 138 kg—is...
Part A) A potter's wheel—a thick stone disk of radius 0.400 m and mass 138 kg—is freely rotating at 60.0 rev/min. The potter can stop the wheel in 5.00 s by pressing a wet rag against the rim and exerting a radially inward force of 58.9N. Find the effective coefficient of kinetic friction between the wheel and rag. Part B) The net work done in accelerating a solid cylindrical wheel from rest to an angular speed of 50rev/ min is...