Question

Consider electromagnetic radiation from a sodium lamp at the sodium doublet wavelengths propagating as a plane...

Consider electromagnetic radiation from a sodium lamp at the sodium doublet wavelengths propagating as a plane wave in free space with amplitude E0 = 2.5 N/C.

Using your knowledge of electromagnetic waves, propose equations for the electric and magnetic fields of the wave of one of the lines of the sodium light doublet. Explain any assumptions that you make.

Homework Answers

Answer #1

is the speed of light

is the magnetic field amplitude

assuming electromagnetic wave propagating along x- axis, we have

are the expressions for electric and magnetic fields

k is wave number and is angular frequency

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that an electromagnetic wave which is linearly polarized along the x−axis is propagating in vacuum...
Suppose that an electromagnetic wave which is linearly polarized along the x−axis is propagating in vacuum along the z−axis. The wave is incident on a conductor which is placed at z > 0 region of the space. The conductor has conductivity σ, magnetic permeability µ and electric permittivity ε. (a) Find the characteristic time for the free charge density which dissipates at the conductor. (b) Write the Maxwell equations and derive the wave equation for a plane wave propagating in...
Consider a sinusoidal electromagnetic wave propagating in the +x direction, whose electric field is parallel to...
Consider a sinusoidal electromagnetic wave propagating in the +x direction, whose electric field is parallel to the y axis. The wave has wavelength 475 nm, and the electric field has amplitude 3.20 x 10^-3 V m-1. What is the frequency of the wave? What is the amplitude of the magnetic field? What are the vector equations for E(x,t) and B(x,t)?
Write the equation of 60*  linearly polarized electromagnetic plane wave with respect to y axis, the electric...
Write the equation of 60*  linearly polarized electromagnetic plane wave with respect to y axis, the electric field amplitude of 3V/m, wavelength of 600 nm in free space and propagating along z direction.
a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 48.0 m...
a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 48.0 m and the electric field vibrates in the xy plane with an amplitude of 20.0 V/m. (a) Calculate the frequency of the wave.__________ MHz (b) Calculate the magnetic field B when the electric field has its maximum value in the negative y direction. magnitude __________nT (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and ω, and...
Consider a source consisting of an infinite sheet lying in the xy-plane in free space. A...
Consider a source consisting of an infinite sheet lying in the xy-plane in free space. A uniformly distributed current Js(t) flows on this infinite plane sheet. (a) The source generates sinusoidally time-varying uniform plane waves propagating in the ±z-direction in free space. Consider the +z propagation having the following characteristics: f = 200MHz and polarization is left circular with the electric field at z = 0+ and t = 0 having an x-component equal to -2E0 and a y-component equal...
A plane electromagnetic wave, with wavelength 2.5 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 2.5 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 270 V/m, oscillates parallel to the y axis. What are the (a) frequency, (b) angular frequency, and (c) angular wave number of the wave? (d) What is the amplitude of the magnetic field component? (e) Parallel to which axis does the magnetic field oscillate? (f) What is the time-averaged rate of energy flow associated with this...
A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is...
A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is at a height of 35,000 km above the surface of the earth, and we assume it has an isotropic power output of 1 kW (although, in practice, satellite antennas transmit signals that are less powerful but more directional). Reception devices pick up the variation in the electric field vector of the electromagnetic wave sent out by the satellite. Given the satellite specifications listed in...
The plane monochromatic electromagnetic wave has frequency ?, polarized in the positive ?-axis direction moving towards...
The plane monochromatic electromagnetic wave has frequency ?, polarized in the positive ?-axis direction moving towards the positive ?-axis direction. The amplitude of the electric field is ?0, and the start of time is chosen so that at ? = 0, the electric field has a value ?0/2 at the origin. Give answers with only the variables above and speed of light is c and permittivity ?0. a. Write the electric field of the wave. b. Find the associated magnetic...
Consider a harmonic, electromagnetic plane wave traveling along a line from the origin to the point...
Consider a harmonic, electromagnetic plane wave traveling along a line from the origin to the point (2,6,4). It is linearly polarized and its electric field lies in a plane perpendicular to the direction of travel of the wave. The wavelength of the wave is 2.0 mm and it has a frequency of 120 GHz. a) What is the index of refraction of the medium in which the wave is traveling? b) Write an expression for E(x,t), that is, the magnitude...
Like all light, the light from the sun is an electromagnetic wave. In the vicinity of...
Like all light, the light from the sun is an electromagnetic wave. In the vicinity of Earth, the average intensity of sunlight is about 1400W/m^2. For this problem, assume that sunlight is a monochromatic plane wave, so you can apply the equations for the energy and pressure of an EM wave. (a) What is the amplitude of the electric field at Earth? (b) If I go outside on a sunny day, the magnetic field sensor on my phone tells me...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT