Question

#2 At one instantaneous moment, the electron concentration in n-type silicon at 300 K varies linearly...

#2 At one instantaneous moment, the electron concentration in n-type silicon at 300 K varies linearly from 1e17 cm-3 at x = 0 to 6e16 cm-3 at x = 2 µm. Calculate the electron current density in the silicon sample at that moment. Assume µn= 1000 cm2/V/s. #3 Explain why the assumed mobility in question #2, above, is valid and reasonable.  NOTE: I just need to know the 2nd part of the question that why 'mu' = 1000 is valid and reasonable.

Homework Answers

Answer #1

Since electron mobility is a function of doping density and according to your problem doping density varies depending on the position, therefore, an average value of electron mobility is used.

You can find the values from the graph (courtesy: ecee.colorado.edu)

see at x=0 where the electron concentration is 1017, electron mobility is 1200 cm2/V/s

and for electron concentration 1016, electron mobility is 800 cm2/V/s

therefore an average of 1000 cm2/V/s is an good approximation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
.         Consider a silicon sample at 300 K. Assume that the electron concentration varies linearly with...
.         Consider a silicon sample at 300 K. Assume that the electron concentration varies linearly with distance. At x=0, the electron concentration is n(0). At x=10 µm, the electron concentration is n(10µm)= 5x1014/cm3. If the electron diffusion coefficient, assumed constant, is Dn =30 cm2/sec, determine the electron concentration at x=0 for the following two diffusion current densities: (a) the diffusion current density is found to be Jndiff = + 0.9 A/cm2 and (b) Jndiff = - 0.9 A/cm2.
The electron concentration in a semiconductor is given by n = 1016((1-2x)/L) cm-3 for 0 ≤...
The electron concentration in a semiconductor is given by n = 1016((1-2x)/L) cm-3 for 0 ≤ x ≤ L, where L = 15 μm. The electron mobility and diffusion coefficient are μn = 1200cm2/V-s and Dn = 30.9cm2/s. An electric field is applied such that the total electron current density is a constant over the given range of x and is Jn = -50 A/cm2 . (a) Determine the electron diffusion current density (b) Determine the required electric field versus...
2. b) An n-type silicon wafer undergoes a pre-deposition diffusion process with a constant surface concentration...
2. b) An n-type silicon wafer undergoes a pre-deposition diffusion process with a constant surface concentration of boride gas; the resulting concentration of boron in silicon at the surface is estimated to be 1x1018 atoms cm-3. The background concentration of trace boron atoms in the silicon wafer is estimated to be 1x1014 cm-3. Estimate the depth of the p-n junction below the surface when the background doping concentration of the n-type impurity is 3.45 x1016 cm-3; assume the diffusion process...
Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration Nd...
Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration Nd (in cm?3) in n-side is Nd = 5×1015/cm3 and the acceptor impurity concentration Na in the p-side is Na = 715 ×1015/cm3. Given: the diode area A = 2×10?3 cm2, ni = 1010/cm3, ?n = 10?8 s and ?p = 10?7 s Determine the following when a forward bias of 0.6 V is applied to the diode: 1. What are the values (in ?m)...
The electron concentration gradient of some material is dn/dx=1017cm-4, and the Constant Table: e0 =8.85´10-12C2×N--1×m-2 ;...
The electron concentration gradient of some material is dn/dx=1017cm-4, and the Constant Table: e0 =8.85´10-12C2×N--1×m-2 ; R=8.315J-mol-1×K-1; m0= 4π´10-7N×A-2; h = 6.63´10-34J×s; e = 1.602´10-19C; G=6.67´10-11N×m2-kg-2; me=9.11´10-31kg; g=9.8 m/s2; mobility of the electron is 1350 cm2/V.s,calculate: (a) the diffusion coefficient of the electron, assuming kT=0.0259ev at T = 300 K. (b) the diffusion current density of electrons.
1. Compute the resistivity of an intrinsic semiconductor at 300 K, in units of Ω-m, given...
1. Compute the resistivity of an intrinsic semiconductor at 300 K, in units of Ω-m, given that it has an intrinsic carrier concentration of 4.9 x1022m-3 and electron and hole mobilities of 0.53 and 0.09 m2/V-s, respectively. 2. The intrinsic concentration of electrons and holes (i.e. concentration of e-h pairs) in Si at room temperature is approximately 1x1010 cm-3. Given the density and atomic mass of Si to be 2.33 g/cm3 and 28.06 g/mol, determine the ratio of ionized to...