Question

An 8 kg solid sphere has a radius of 70 mm and anangular velocity of 60...

An 8 kg solid sphere has a radius of 70 mm and anangular velocity of 60 rpm at the top of a 30 degree incline. At the bottom of the incline it has an angular velocity of 15x60 rpm. Assume the sphere rolls without slipping. Find the height of the incline in meters.

The answer is 3.092 m. How do I get there?

Homework Answers

Answer #1

for solid sphere

KE = 0.5*m*v^2 + 0.5*I*w^2

I = 2*m*r^2/5

w = v/r

gives use

KE = 0.7*m*v^2 = 0.7*m*w^2*r^2

Now,

Using energy conervation

KEi + PEi = KEf + PEf

KEi = 0.7*m*r^2*wi^2

KEf = 0.7*m*r^2*wf^2

PEi = m*g*h

PEf = 0

So,

0.7*m*r^2*wi^2 + m*g*h = 0.7*m*r^2*wf^2 + 0

h = 0.7*r^2*(wf^2 - wi^2)/g

given values are:

r = 70 mm = 0.07 m

g = 9.81 m/sec^2

wi = 60 rpm = 6.283 rad/sec

wf = 94.247 rad/sec

Using these values:

h = 0.7*0.07^2*(94.247^2 - 6.283^2)/9.81

h = 3.091 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid, homogeneous sphere with of mass of M = 2.25 kg and a radius of...
A solid, homogeneous sphere with of mass of M = 2.25 kg and a radius of R = 11.3 cm is resting at the top of an incline as shown in the figure. The height of the incline is h = 1.65 m, and the angle of the incline is θ = 17.3°. The sphere is rolled over the edge very slowly. Then it rolls down to the bottom of the incline without slipping. What is the final speed of...
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down...
A solid sphere with a radius 0.25 m and mass 240 g rolls without slipping down an incline, starting from rest from a height 1.0 m. a. What is the speed of the sphere when it reaches the bottom of the incline? b. From what height must a solid disk with the same mass and radius be released from rest to have the same velocity at the bottom? It also rolls without slipping.
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the...
1. A solid sphere of mass 50 kg rolls without slipping. If the center-of-mass of the sphere has a translational speed of 4.0 m/s, the total kinetic energy of the sphere is 2. A solid sphere (I = 0.4MR2) of radius 0.0600 m and mass 0.500 kg rolls without slipping down an inclined plane of height 1.60 m . At the bottom of the plane, the linear velocity of the center of mass of the sphere is approximately _______ m/s.
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 25.0 ∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v 2 at the bottom of the ramp.
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely...
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 22.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2=__________ m/s
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely...
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely translational speed of 2.50 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 28.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2= m/s
An 8.20 cm-diameter, 390g solid sphere is released from rest at the top of a 2.00m...
An 8.20 cm-diameter, 390g solid sphere is released from rest at the top of a 2.00m long, 19.0 degree incline. It rolls, without slipping, to the bottom. 1) What is the sphere's angular velocity at the bottom of the incline? 2) What fraction of its kinetic energy is rotational?
A solid, uniform sphere of mass 2.0 kg and radius 1.7m rolls without slipping down an...
A solid, uniform sphere of mass 2.0 kg and radius 1.7m rolls without slipping down an inclined plane of height 7.0m . What is the angular velocity of the sphere at the bottom of the inclined plane? a) 5.8 rad/s b) 11.0 rad/s c) 7.0 rad/s d) 9.9 rad/s
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg...
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg starts with a purely translational speed of 1.25 m/s 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.25 m 2.25 m long, and is tilted at an angle of 29.0 ∘ 29.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ? 2 v2 at the...
An 6.90-cm-diameter, 360 g solid sphere is released from rest at the top of a 1.80-m-long,...
An 6.90-cm-diameter, 360 g solid sphere is released from rest at the top of a 1.80-m-long, 20.0 ∘ incline. It rolls, without slipping, to the bottom. What is the sphere's angular velocity at the bottom of the incline? What fraction of its kinetic energy is rotational?