Question

A block with a mass of 2.5kg lies on a surface that is inclined at an...

A block with a mass of 2.5kg lies on a surface that is inclined at an angle of, θ=22o, with the horizontal. The coefficient of friction between the block and the surface of the incline is, uk=0.20.

a) Apply Newton’s 2nd Law to determine the acceleration of the block as it slides down the

surface. Answer -->  [±1.9m/s2]

b) Determine the magnitude of the velocity of the block at the base of the inclined surface

if the block starts from rest and moves through a distance of 3.41m from its initial

position to the base of the incline. Answer --> [3.6m/s]

c) Apply the Work/Energy Theorem to determine the velocity of the block at the base of

the inclined surface if the block starts from rest and moves through a distance of 3.41m from its initial position to the base of the incline Answer --> [3.6m/s]

Homework Answers

Answer #1

part a:

component of weight of the block along the incline in downward direction

=mass*g*sin(theta)=9.17786 N

normal force=mass*g*cos(theta)=22.716 N

friction force=friction coefficient*normal force

=4.5432 N

friction force will oppose the motion

hence total force along the inclince in downward direction

=9.17786-4.5432=4.5754 N

then acceleration=force/mass=1.83016 m/s^2

part b:

initial velocity=0

distance travelled=3.41 m

then final velocity=sqrt(initial velocity^2+2*acceleration*distance)

=3.533 m/s

part c:

initial potential energy=mass*g*height

=2.5*9.8*3.41*sin(22)=31.2965 J

work done against friction=force*distance

=4.5432*3.41=15.4923 J

then kinetic energy at the base=initial energy-work done against friction

=15.8042 J

if speed is v,

then 0.5*mass*v^2=15.8042

==>v=sqrt(2*15.8042/2.5)=3.555 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block with mass m = 14.6 kg slides down an inclined plane of slope angle...
A block with mass m = 14.6 kg slides down an inclined plane of slope angle 15.8 ° with a constant velocity. It is then projected up the same plane with an initial speed 4.35 m/s. How far up the incline will the block move before coming to rest?
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A 2.5kg wooden block is held by a support on the surface of a frictionless incline....
A 2.5kg wooden block is held by a support on the surface of a frictionless incline. A 20g bullet is shot at the block from below, in a direction parallel to the incline, at a speed of 550m/s. (a) Calculate the velocity of the center of mass of the two bodies before the collision. (b) If the bullet lodges into the block, find the block’s velocity immediately after the collision. (c) At what maximum height (measured from the initial position)...
A block with a mass m1=2.3kg is sliding along a frictionless surface with a velocity of...
A block with a mass m1=2.3kg is sliding along a frictionless surface with a velocity of 7.3m/s. It collides inelastically with mass m2=1.7kg and the two blocks stick together. They then slide down a frictionless incline with a Height 95cm. How fast are they going when they reach the bottom of the incline? Part B. If the coefficient of kinetic friction, uk is 0.15 along the surface at the bottom of the ramp. What distance will the blocks side before...
If a block of mass 10 kg slides down an inclined plane having an angle of...
If a block of mass 10 kg slides down an inclined plane having an angle of 30 degrees above the horizon,at the end of the inclined plane there is a frictionless surface on the end of it lies a spring having spring constant 500N/m.There is friction on the inclined plane,Find the coefficient of kinetic friction of the inclined plane. when the block reaches the spring,it compresses it by 0.40m Let the block start from rest and the height be 20...
A block of mass 24.1 kgkg  is placed on a rough surface inclined relative to the ground...
A block of mass 24.1 kgkg  is placed on a rough surface inclined relative to the ground at an angle αα . The coefficient of kinetic friction is 0.25 and the coefficient of static friction is 0.37. A)The incline angle αα is increased until the block starts to move, find the critical angle at which slipping of block occurs. B) Find the acceleration once the block started to move at critical angle. C) Find the speed of the block be moving...
A box with a mass of 8.55 kg slides up a ramp inclined at an angle...
A box with a mass of 8.55 kg slides up a ramp inclined at an angle of 27.0° with the horizontal. The initial speed is 1.68 m/s and the coefficient of kinetic friction between the block and the ramp is 0.54. Determine the distance (in m) the block slides before coming to rest.
A block of mass 2.0 kg is attached to a spring whose spring constant is ?...
A block of mass 2.0 kg is attached to a spring whose spring constant is ? = 8 N/m. The block slides on an incline with θ = 37 . The block starts at rest with the spring unextended before sliding down a distance of 0.5 m down the incline. Assume that µk = 0.20. What is the velocity of the block as soon as it slides 0.5 m down the incline? (Ans: ?? = 1.825 ?/? )
An 8.5-kg block is pushed along a horizontal rough surface by a 40-N force inclined at...
An 8.5-kg block is pushed along a horizontal rough surface by a 40-N force inclined at 20° with the horizontal. The coefficient of friction between the surface and block is 0.35. If the block has an initial velocity of 3.6 m/s and the force does 200 J of work on the block, find: (a) The total distance moved by the block. (b) The final velocity of the block.
a 4.0 block starts from rest and slides down a plane inclined at 60° horizonta l....
a 4.0 block starts from rest and slides down a plane inclined at 60° horizonta l. The coefficient of kinetic friction between the Surface and the block is 0.20. The work done by friction on the block is?