Question

Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls...

Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls on a screen 1.75 m away.

Find the linear distance on the screen from the central bright fringe to the first bright fringe above it. ________cm

Homework Answers

Answer #1

first bright fringe will be half way between first and second dark fringe.

distance of first dark fringe from central bright fringe=lambda*D/a

where lambda=wavelengh=626 nm=626*10^(-9) m

D=distance of the screen=1.75 m

d=slit width=7.74 um=7.74*10^(-6) m

then distance of first dark fringe=626*10^(-9)*1.75/(7.74*10^(-6))=0.14154 m

distance of second dark fringe=2*626*10^(-9)*1.75/(7.74*10^(-6))=0.28308 m

then distance of first bright fringe=(0.14154+0.28308)/2=0.21231 m=21.231 cm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls...
1.Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls on a screen 1.75 m away. Find the linear distance on the screen from the central bright fringe to the first bright fringe above it._________cm 2. A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 21.0 cm . A diverging lens, with a focal length f2 = -42.5 cm , is placed 30.0...
Light with a wavelength of 702 nm passes through a slit 7.50 ?m wide and falls...
Light with a wavelength of 702 nm passes through a slit 7.50 ?m wide and falls on a screen 2.05 m away. Find the linear distance on the screen from the central bright fringe to the first bright fringe above it. Express your answer to three significant figures.
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls...
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls on a screen 1.60 m away. Find the distance on the screen from the central bright fringe to the third dark fringe above it. ___ cm Monochromatic light passes through two slits separated by a distance of 0.0332 mm. If the angle to the third maximum above the central fringe is 3.21 degrees, what is the wavelength of the light? __ nm
a) Light of wavelength 585 nm passes through a slit 6.00 × 10-6 m wide and...
a) Light of wavelength 585 nm passes through a slit 6.00 × 10-6 m wide and falls on a screen that is 2.28 m away. What is the distance on the screen from the center of the central bright fringe to the thrid dark fringe on either side? b) Two stars are 4.7 × 1011 m apart and are equally distant from the earth. A telescope has an objective lens with a diameter of 1.06 m and just detects these...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 2.55 m away. Define the width of a bright fringe as the distance between the minima on either side. a) What is the width of the central bright fringe? b) What is the width of the first bright fringe on either side of the central one?
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is 0.03mm wide. What is the width of the central bright fringe on the diffraction pattern formed on a screen placed at a distance of 2.00 m away from the slit? 2. Light of wavelength 500 nm is incident on a single slit of width 0.02 mm to produce a diffraction pattern with intensity 4.00×10^-4 W/m^2 at the center of a screen placed far away...
Light of wavelength 610 nm falls on a slit that is 3.80×10?3 mm wide. How far...
Light of wavelength 610 nm falls on a slit that is 3.80×10?3 mm wide. How far the first bright diffraction fringe is from the strong central maximum if the screen is 12.5 m away.
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern...
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern on a screen 2.6 m away from the slit. Calculate the distance between the first and the third minima on the same side of the central maximum.
Monochromatic light with a 462 nm wavelength passes through a 750 μm wide single slit on...
Monochromatic light with a 462 nm wavelength passes through a 750 μm wide single slit on its way to a viewing screen 2.51 m beyond the slit. A converging lens with focal length f = 4.92 m is placed directly behind the slit. Determine the width of the central maximum with the added lens. You may assume the small angle approximation applies.
Light of wavelength 590 nm falls on a slit that is 3.90×10−3mm wide. Part A Estimate...
Light of wavelength 590 nm falls on a slit that is 3.90×10−3mm wide. Part A Estimate how far the first brightest diffraction fringe is from the strong central maximum if the screen is 10.0 mm away.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT