Question

Suppose a conducting sphere, radius r2, has a spherical cavity
of radius r1 centered at the sphere's center. At the center of the
sphere is a point charge -4Q. Assuming the conducting sphere has a
net charge +Q determine the electric field,magnitude and direction,
in the following situations:

a) From r = 0 to r = r1.

b) From r = r1 to r = r2.

c) Outside of r = r2

d) find the surface charge density (charge per surface area)
conductor, respectively.

the inside and outside surfaces of the on

Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..

An uncharged conducting sphere of radius 2b is centered on the
origin and has a spherical cavity of radius b that is also centered
on the origin. 1. If a charge of +q is at the origin, explain why
the surfaces at r=2b and r=b each have a net charge of +q and −q,
respectively, and not, say, +q/2 and −q/2. 2. Repeat this question
for the case where the inner surface of the cavity is not spherical
(but the...

A solid, nonconducting sphere of radius R = 6.0cm is charged
uniformly with an electrical charge of q = 12µC. it is enclosed by
a thin conducting concentric spherical shell of inner radius R, the
net charge on the shell is zero.
a) find the magnitude of the electrical field
E1 inside the sphere (r < R) at the
distance r1 = 3.0 cm from the center.
b) find the magnitude of the electric field E2
outside the shell at the...

A hollow, conducting sphere with an outer radius of 0.260 m and
an inner radius of 0.200 m has a uniform surface charge density of
+6.47 × 10−6 C/m2. A charge of -0.400 μC is now introduced into the
cavity inside the sphere.
a)What is the new charge density on the outside of the
sphere?
b)Calculate the strength of the electric field just outside the
sphere
c)What is the electric flux through a spherical surface just
inside the inner surface...

A hollow, conducting sphere with an outer radius of 0.260 mm and
an inner radius of 0.200 mm has a uniform surface charge density of
+6.57 ×× 10−6−6 C/m2C/m2. A charge of -0.700 μCμC is now introduced
into the cavity inside the sphere.
What is the new charge density on the outside of the sphere?
Calculate the strength of the electric field just outside the
sphere.
What is the electric flux through a spherical surface just
inside the inner surface...

A hollow, conducting sphere with an outer radius of 0.260 m and
an inner radius of 0.200 m has a uniform surface charge density of
+6.37 × 10−6 C/m2. A charge of -0.700 μC is now introduced into the
cavity inside the sphere. a) What is the new charge density on the
outside of the sphere? b) Calculate the strength of the electric
field just outside the sphere. c) What is the electric flux through
a spherical surface just inside...

A spherical cavity with a radius of 4.50 cm is located in the
center of a metallic sphere with a radius of 18 cm. A point charge
Q = +5.50 μC is located in the center of the cavity, while the net
charge in the metallic conductor is Q '= -4.50 μC.
a) Determine the load on the surface of the conductor around the
cavity and on the outer surface of the conductor.
b) Find the magnitude of the electric...

Answer with a drawing please!
A nonconducting spherical shell of inner radius R1 and
outer radius R2 contains a uniform volume charge density
ρ throughout the shell. Derive he magnitude of the
electric field at the
following radial distances r from the center of the
sphere:
a) r<R1
b) R1<r<R2
c) r>R2

A charge is spread out uniformly over a small non-conducting
sphere. The small sphere shares a center with a larger spherical
shell with an inner radius of 6 ?? and an outer radius of 12 ??. a)
Using Gauss’ Law, what is the magnitude of the charge on the
nonconducting sphere if the field from the sphere is measured to be
8200 ?/? when 0.5 ?? from the center? b) What is the surface charge
density on the inside of...

A spherical, non-conducting shell of inner radius r1 = 7 cm and
outer radius r2= 16 cm carries a total charge Q = 18 nC distributed
uniformly throughout the volume of the shell. What is the magnitude
of the electric field at a distance r = 11 cm from the center of
the shell? (k = 1/4πε0 = 8.99 × 109 N.m2/C2)

Charge is distributed throughout a spherical shell of inner
radius r1 and outer radius r2 with a volume density given by ρ = ρ0
r1/r, where ρ0 is a constant. Determine the electric field due to
this charge as a function of r, the distance from the center of the
shell.
In this problem the volume charge density ρ is not uniform; it
is a function of r (distance from the center.)

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 17 minutes ago

asked 19 minutes ago

asked 19 minutes ago

asked 19 minutes ago

asked 19 minutes ago

asked 28 minutes ago

asked 38 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago