Question

A double-slit interference pattern is created by two narrow slits spaced 0.21 mm apart. The distance...

A double-slit interference pattern is created by two narrow slits spaced 0.21 mm apart. The distance between the first and the fifth minimum on a screen 61 cm behind the slits is 6.2 mm. a. Draw an intensity graph showing the interference pattern and identifying the central maximum, first minimum, fifth minimum, and the distance given in the problem declaration. b. What is the wavelength (in nm) of the light used in this experiment?

Homework Answers

Answer #1

the slits spacing, d = 0.21 mm

distance of screen, D = 61 cm

The condition for minima is given as

So, first minima, n = 0

fifth minima, n = 4

For small angle

From the figure:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A double-slit interference pattern is created by two narrow slits spaced 0.15 mm apart. The distance...
A double-slit interference pattern is created by two narrow slits spaced 0.15 mm apart. The distance between the first and the fifth minimum on a screen 80 cm behind the slits is 6.5 mm. What is the wavelength (in nm) of the light used in this experiment? Round off your answer to 1 decimal place (ex. 304.5 nm) and include the appropriate units
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on...
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on a screen 2 m away from the slits. a. If the seventh bright fringe on the detector is 10 cm away from the central fringe, what is the wavelength of light (in nm) used in this experiment? b. What is the angle of the diffraction order?
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
Two slits spaced 0.455 mm apart are placed 50.0 cm from a screen. What is the...
Two slits spaced 0.455 mm apart are placed 50.0 cm from a screen. What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 540 nm? mm
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern is observed on a screen at a distance 1.50 m away. (a) What is the vertical distance of the second maximum (not counting the central maximum) from the center of the interference pattern? (b) At what distance from the center does the intensity fall to 1/4th of the intensity at the center?
A red He-Ne laser with a wavelength of 632.8 nm illuminates two narrow horizontal slits with...
A red He-Ne laser with a wavelength of 632.8 nm illuminates two narrow horizontal slits with gap distance 0.200 mm. A pattern of interference bands then appears on a screen 1.00m from the columns. a) How far from the central maximum, in both radians and millimeters on the screen, is first minimum? b) How far in millimeters on the screen, is the fifth maximum from the central maximum? c) How big is the intensity in the fifth maximum compared to...
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by...
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by coherent light with wavelength 550 nm. The intensity at the center of the central maximum is 4.30 × 10-6 W/m2. What is the distance on the screen between the third bright fringe and the sixth dark fringe? What is the intensity at a point midway between the center of the central maximum and the first minimum?
Two slits spaced 0.400 mm apart are placed 72.0 cm from a screen. Part A What...
Two slits spaced 0.400 mm apart are placed 72.0 cm from a screen. Part A What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 530 nm ? (delta y=_in mm)
A red He-Ne laser with a wavelength of 632.8 nm illuminates two narrow horizontal slits with...
A red He-Ne laser with a wavelength of 632.8 nm illuminates two narrow horizontal slits with a gap distance 0.200mm. A pattern of interference bands then appears on a screen 1.00m from the columns. a) How far from the central maximum, in both radians and millimeters on the screen, is first minimum? b) How far in millimeters on the screen, is the fifth maximum from the central maximum? c) What is the intensity of the fifth maximum compared to the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT