Question

A 50-g body compresses a vertical spring by 10.0 cm. It is pushed down a further...

A 50-g body compresses a vertical spring by 10.0 cm. It is pushed down a further 20.0 cm and released. Relative to this position, (a) what is the maximum height reached by the body if it is not connected to the spring? (b) What is the maximum extension of the spring if the body is glued to the spring?

Homework Answers

Answer #1

.....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 0.2 kg mass is pushed down against a vertical spring with a spring constant k...
a 0.2 kg mass is pushed down against a vertical spring with a spring constant k = 1000 N/m. when the spring is compressed by 10 cm, the object is let go. what vertical height above the release point will the obhect reach? give answer in meters
3. An 8 kg stone rests on a vertical spring of force constant 785 N /...
3. An 8 kg stone rests on a vertical spring of force constant 785 N / m. The stone is pushed down about 30 cm and released. (a) Obtain the elastic potential energy of the compressed spring just before releasing it (b) Obtain the maximum height reached by the stone (c) Obtain the velocity just after it leaves the spring.
A mass of 500 g is placed on a vertical spring and the spring stretches by...
A mass of 500 g is placed on a vertical spring and the spring stretches by         18.0 cm. It is then pulled down an additional 10.0 cm and released. Find the:          spring constant. periodic time                                                                          frequency.                                                                                            maximum velocity of the mass.                                                        maximum restoring force.                                                              speed when the displacement is 10 cm from equilibrium.          equation of the displacement and acceleration as a function of time.    velocity after 2.0 s.   Acceleration after 3.0 s.                                                                           
A wooden ball weighing 8.50 N is pushed into the air by a vertical spring with...
A wooden ball weighing 8.50 N is pushed into the air by a vertical spring with a spring constant of 1190 N/m . If the spring was compressed 0.170 m before pushing the ball straight up, what is the maximum height that the ball will reach above the initial position?
A 469 g block is released from rest at height h0 above a vertical spring with...
A 469 g block is released from rest at height h0 above a vertical spring with spring constant k = 410 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 18.3 cm. How much work is done (a) by the block on the spring and (b) by the spring on the block? (c) What is the value of h0? (d) If the block were released from height 4h0 above the spring, what...
0.2 kg mass gets pushed down against a vertical spring with spring constant k=1000N/m. when the...
0.2 kg mass gets pushed down against a vertical spring with spring constant k=1000N/m. when the spring is compressed by 10 cm the object is let go. what is the speed of the object the second its let go from the spring. (i.e. the spring is at its equilibrium length) answer in m/s
with a complete solution A body of mass 2 gr attached to a vertical spring stretches...
with a complete solution A body of mass 2 gr attached to a vertical spring stretches it 1000/4 cm to reach an equilibrium position. When the body moves in the air it experiences a resistance opposite to its movement, proportional to its speed, with a damping constant d = 10 gr/sec. Approximate the acceleration of gravity by g = 1000 c m / s e c 2 . b. Find a differential equation of the form y ′′ = F...
A 220 g stone is dropped onto a relaxed vertical spring that has a spring constant...
A 220 g stone is dropped onto a relaxed vertical spring that has a spring constant of k = 4.5 N/cm. The stone becomes attached to the spring and compresses the spring 17 cm before momentarily stopping. While the spring is being compressed, what work is done on the stone by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the stone just before it hits the spring? (Assume no friction) (d)...
When A 200 g block is attached to a vertical spring it is stretched by 10...
When A 200 g block is attached to a vertical spring it is stretched by 10 cm. If the block is then lifted 5 cm and released it will execute simple harmonic motion with a period of 0.3 s. (a) Find the force constant of the spring. (b) Find the mass of the block. (c) Find the amplitude of the motion. (d) What is the maximum speed of the block? (e) What is the speed of the block at the...
A 100 g block is dropped onto a relaxed vertical spring that has a spring constant...
A 100 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 3.6 N/cm (see the figure). The block becomes attached to the spring and compresses the spring 18 cm before momentarily stopping. While the spring is being compressed, what work is done on the block by (a) the gravitational force on it and (b) the spring force? (c) What is the speed of the block just before it hits the spring? (Assume...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT