Question

an object of m=11 kg has 2 forces acting on it. f1=(6Nx,-5Ny), f2=11N 150° with respect...

an object of m=11 kg has 2 forces acting on it. f1=(6Nx,-5Ny), f2=11N 150° with respect to the x direction, counterclockwise. the objects initial velocity is 0

Starting from laws of motion find a
then find v(t)
then position(t)

please inclide relevant calculus

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three forces acting on an object are given by F1 = (−1.55î + 7.15ĵ) N, F2...
Three forces acting on an object are given by F1 = (−1.55î + 7.15ĵ) N, F2 = (5.10î − 1.4ĵ) N, and F3 = (−43.5î) N. The object experiences an acceleration of magnitude 3.55 m/s2. a. What is the direction of the acceleration? (Counterclockwise from the x-axis) b. What is the mass of the object? (kg) c. If the object is initially at rest, what is its speed after 17.0 s? d. What are the velocity components of the object...
Three forces acting on an object are given by F1 = (−1.9î + 6.25ĵ) N, F2...
Three forces acting on an object are given by F1 = (−1.9î + 6.25ĵ) N, F2 = (4.60î − 2.4ĵ) N, and F3 = (−50î) N. The object experiences an acceleration of magnitude 3.90 m/s2. (a) What is the direction of the acceleration? (b) What is the mass of the object? (c) If the object is initially at rest, what is its speed after 17.0 s? (d) What are the velocity components of the object after 17.0 s? (Let the...
A 200 Kg block has three forces applied to it at the same time: F1 =...
A 200 Kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0 degrees, F2 =150 N force at 95.0 degrees, & F3 = 75.0 N force at 206.0 degrees. (Angles measured counterclockwise from positive x-direction) There is no gravitational force. a. Find the x & y components of the net force on the block b. Find the magnitutude and direction of the net force. c. The block was initially at rest;...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block. b.         Find the magnitude and direction of the net force. c.         The block was initially at rest; after...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block.             b.         Find the magnitude and direction of the net force.             c.         The block was initially at rest; after...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block.             b.         Find the magnitude and direction of the net force.             c.         The block was initially at rest; after...
A 2 kg object is attached to a horizontal spring with k = 200 N m...
A 2 kg object is attached to a horizontal spring with k = 200 N m . The object slides freely on a horizontal frictionless surface. You pull the object to an initial displacement of 5 cm and launch it with an initial velocity of −2 m s . (a) Find the total energy of the motion. (b) Write the equation for the position of the object as a function of time. Make sure you put values in for any...
An object of mass m = 0.25 kg has a horizontal spring attached to its left...
An object of mass m = 0.25 kg has a horizontal spring attached to its left side, and slides along a frictionless surface. The spring constant is κ = 0.4 N m . At t = 0 s, the object is displaced 0.1m to the right of its equilibrium position. Its initial velocity is 0.4 m s , toward the right. a) Calculate the period T of the motion. b) Calculate the angular frequency ω. c) Calculate the frequency ν....
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string,...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string, draw arrows (click on the “Shapes” tab) showing the forces acting on the ball (lengths can be arbitrary, but get the relative lengths of each force roughly correct). For this case of zero acceleration, use Newton’s 2nd law to find the magnitude of the tension force in the string, in units of Newtons. Since we will be considering motion in the horizontal xy plane,...
1) The position of an object moving along the x-axis is given by x(t) = 2t^2...
1) The position of an object moving along the x-axis is given by x(t) = 2t^2 - 21t^2 + 100t. At what time is the object moving the slowest? 2) A water balloon is thrown upward from a window 25 m above the ground and hits the ground 3.30 s later. What’s the maximum height above the window that the balloon reaches? 3) A boy throws a rock with an initial velocity of 5.15 m/s at an angle 30° above...