Question

Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of...

Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of 63 m/s over the 4.6 day orbit of the planet. What is the mass of the planet in kg? Assume the star has the same mass as the Sun (2.0 × 1030 kg), there are 365.25 days in a year, and 1AU = and 1.5 × 1011 m.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of...
Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of 71 m/s over the 4.5 day orbit of the planet. What is the mass of the planet in kg? Assume the star has the same mass as the Sun (2.0 × 1030 kg), there are 365.25 days in a year, and 1AU = and 1.5 × 1011 m.
Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of...
Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of 54 m/s over the 4.3 day orbit of the planet. What is the mass of the planet in kg? Assume the star has the same mass as the Sun (2.0 × 1030 kg), there are 365.25 days in a year, and 1AU = and 1.5 × 1011 m.
Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of...
Imagine a planet orbiting a star. Observations show a Doppler shift in the star's spectrum of 62 m/s over the 4.3 day orbit of the planet. What is the mass of the planet in kg? Assume the star has the same mass as the Sun (2.0 × 1030 kg), there are 365.25 days in a year, and 1AU = and 1.5 × 1011 m.
Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift...
Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift for each 80 m/s , but one has a period of 6 days and the other has a period of 600 days. The star has a mass of one solar mass. Assume 1 solar mass equals 2∗1030 kg. 1. Calculate the mass of the shorter period planet. (in kg) 2. Calculate the mass of the longer period planet.
Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift...
Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift for each is 90 m/s , but one has a period of 6 days and the other has a period of 600 days. The star has a mass of one solar mass. Assume 1 solar mass equals 2*10^30 kg. What is: A. the mass of the planet with the shorter period, and B. the mass of the planet with the longer period.
Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift...
Imagine two planets orbiting a star with orbits edge-on to the Earth. The peak Doppler shift for each 75 m/s, but one has a period of 7 days and the other has a period of 700 days. The star has a mass of one solar mass. Assume 1 solar mass equals 2*10^30 kg. 1.) Calculate the mass of the shorter period planet. (Hint: See Mathematical Insight Finding Masses of Extrasolar Planets) 2.) Calculate the mass of the longer period planet.
A planet of mass ?=4.55×1024 kg is orbiting in a circular path a star of mass...
A planet of mass ?=4.55×1024 kg is orbiting in a circular path a star of mass ?=8.55×1029 kg . The radius of the orbit is ?=1.75×107 km . What is the orbital period (in Earth days) of the planet ?planet ?
Kepler 1606b is an exoplanet: a planet orbiting a star different than our own. Named for...
Kepler 1606b is an exoplanet: a planet orbiting a star different than our own. Named for the star it orbits (Kepler 1606, a star about 3000 light-years away), it was discovered in the year 2016 by the Kepler space telescope. Kepler 1606b orbits its star a little bit closer than the Earth's orbit to the Sun, at a distance of 0.64⋅?????ℎ, where ?????ℎ=1.50×1011 m is the radius of Earth's orbit. The star Kepler 1606 is bit cooler than our Sun,...
An extrasolar planet in orbit around a Sun-like star is discovered using the Doppler wobble method....
An extrasolar planet in orbit around a Sun-like star is discovered using the Doppler wobble method. Based on the shape of the radial velocity curve, the orbit is circular. The data are as follows. Maximum velocity of the star: 6.3 meters / second Orbital period: 541 days What is the mass of the extrasolar planet? Give your answer in units of Jupiter masses.
An extrasolar planet in orbit around a Sun-like star is discovered using the Doppler wobble method....
An extrasolar planet in orbit around a Sun-like star is discovered using the Doppler wobble method. Based on the shape of the radial velocity curve, the orbit is circular. The data are as follows. Maximum velocity of the star: 6.3 meters / second Orbital period: 541 days What is the mass of the extrasolar planet? Give your answer in units of Jupiter masses.