Question

IP A ceiling fan is rotating at 0.80 rev/s . When turned off, it slows uniformly...

IP A ceiling fan is rotating at 0.80 rev/s . When turned off, it slows uniformly to a stop in 2.1 min .

Part A

How many revolutions does the fan make in this time?

Express your answer using two significant figures.

Δθ= rev

Part B

Using the result from part A, find the number of revolutions the fan must make for its speed to decrease from 0.80 rev/s to 0.40 rev/s .

Express your answer using two significant figures.

Δθ=   rev

Homework Answers

Answer #1

Part A

Angular acceleration

Part B

Angular acceleration

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cooling fan is turned off when it is running at 920 rev/min. It turns 1100...
A cooling fan is turned off when it is running at 920 rev/min. It turns 1100 revolutions before it comes to a stop. Part A What was the fan's angular acceleration, assumed constant? Express your answer using three significant figures. Part B How long did it take the fan to come to a complete stop? Express your answer to three significant figures and include the appropriate units.
An electric fan is turned off, and its angular velocity decreases uniformly from 570 rev/min to...
An electric fan is turned off, and its angular velocity decreases uniformly from 570 rev/min to 250 rev/min in 3.00 s . Find the angular acceleration in rev/s2. Find the number of revolutions made by the motor in the 3.00 s interval. How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in part A?
An electric fan is turned off, and its angular velocity decreases uniformly from 540 rev/min to...
An electric fan is turned off, and its angular velocity decreases uniformly from 540 rev/min to 220 rev/min in a time interval of length 3.85 s . (a) Find the angular acceleration in revolutions per second per second. (b) Find the number of revolutions made by the fan blades during the time that they are slowing down in part A. (c) How many more seconds are required for the fan to come to rest if the angular acceleration remains constant...
An electric fan is turned off, and its angular velocity decreases uniformly from 550 rev/min to...
An electric fan is turned off, and its angular velocity decreases uniformly from 550 rev/min to 150 rev/min in a time interval of length 3.85 A)Find the angular acceleration in rev/s2. B)Find the number of revolutions made by the motor in the time interval of length 3.85 s C)How many more seconds are required for the fan to come to rest if the angular acceleration remains constant at the value calculated in part A?
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.290 rev/s . The magnitude of the angular acceleration is 0.887 rev/s2 . Both the the angular velocity and angular accleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.760 m . a.) Compute the fan's angular velocity magnitude after time 0.209 s has passed. Express your answer numerically in revolutions per second. b.) Through how many revolutions...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.220 rev/s. The magnitude of the angular acceleration is 0.916 rev/s2. Both the angular velocity and angular acceleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.710 m. Compute the fan's angular velocity magnitude after time 0.192 ss has passed. (Express your answer numerically in revolutions per second.) Through how many revolutions has the blade turned in the...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.300 rev/s. The magnitude of the angular acceleration is 0.902 rev/s2. Both the the angular velocity and angular accleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.800 m. Compute the fan's angular velocity magnitude after time 0.206 ss has passed. Express your answer numerically in revolutions per second. Through how many revolutions has the blade turned in...
QUESTION 3 An electric fan is turned off, and it slows down from 356 revolutions/s to...
QUESTION 3 An electric fan is turned off, and it slows down from 356 revolutions/s to 80.1 revolutions/s in 4.07 seconds. How many times did the fan blades spin in this time? QUESTION 4 A disk rotates about a fixed axis through its center of mass and perpendicular to the disk. It starts from rest and accelerates uniformly, reaching angular speed ω after 8.44 revolutions. If it continues to accelerated at the same rate, how many more revolutions would it...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.280 rev/s . The magnitude of the angular acceleration is 0.895 rev/s2 . Both the the angular velocity and angular accleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.800 m. Help to answers part B-E. Answer for A is given A) Compute the fan's angular velocity magnitude after time 0.202 s has passed. = 0.461 rev/s B)...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.240 rev/s. The magnitude of the angular acceleration is 0.907 rev/s2rev/s2 . Both the angular velocity and angular acceleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.740 m. Part A: Compute the fan's angular velocity magnitude after time 0.209 ss has passed. Part B: Through how many revolutions has the blade turned in the time interval 0.209...