Question

A negative charge is moving toward a uniform magnetic field that is pointing in the –x...

A negative charge is moving toward a uniform magnetic field that is pointing in the –x direction. The force exerted by the magnetic field on the electron is pointing in the -y-direction. In what direction is the negative charge moving when it enters the magnetic field?

a. y-direction

b. z-direction

c. x - direction

d. -y-direction

e. -z-direction

f. -x-direction

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron moving in the +x direction enters a magnetic field that is directed toward the...
An electron moving in the +x direction enters a magnetic field that is directed toward the -z direction (into the plane of the page). The direction of the force on the electron is ?
An electron, moving toward the west, enters a uniform magnetic field. Because of this field the...
An electron, moving toward the west, enters a uniform magnetic field. Because of this field the electron curves upward. What is the direction of the magnetic field and why? a)towards the west. b)downward. c)towards the north. d)towards the south. e)upward. answer is north because, using LEFT hand,   1) looking at "electron curves upward" = sounds to me that the FORCE is OUT of the PAGE. (THUMB OUT OF THE PAGE) i need confirm on this part. 2) moving west, (MY...
When a charge is moving downwards and there is a magnetic field is pointing to the...
When a charge is moving downwards and there is a magnetic field is pointing to the left, the direction of the magnetic force would be __________. forward backward leftwards rightwards upward downward no magnetic force
Consider a magnetic force exerted on an electric charge in a uniform B⃗ B→ field. Which...
Consider a magnetic force exerted on an electric charge in a uniform B⃗ B→ field. Which of the following statements are true? Check all that apply. The direction of the magnetic force exerted on a moving charge in a magnetic field is perpendicular to the direction of the B⃗ B→ field. A magnetic force is exerted on an electric charge moving parallel to a B⃗ B→ field. A magnetic force is exerted on a stationary electric charge in a uniform...
A charged particle is moving north when it enters a uniform magnetic field pointing from east...
A charged particle is moving north when it enters a uniform magnetic field pointing from east to west. If the force experienced by the particle is vertically downward, the charge on the particle is a. positive b. negative c. The force is independent of the charge. d. Not enough information given. The magnetic pole in Antarctica is a ______________ magnetic pole a. North b. South c. It changes from year to year. d. It depends on the time of year....
A positive charge is moving at 3 m/s to the right in a magnetic field pointing...
A positive charge is moving at 3 m/s to the right in a magnetic field pointing to the top of the page. In what direction is the force on the charge, if any? Now replace the positive charge with a negative charge. In what direction is the force now? Sketch the situation.
A long straight wire carries a current creating magnetic field. A positive charge is moving parallel...
A long straight wire carries a current creating magnetic field. A positive charge is moving parallel to the wire with the direction opposite to the current. The force exerted by the magnetic field on the charge is directed: A. Parallel to the wire, the same direction as the current; B. Parallel to the wire, direction opposite to the current; C. Perpendicular to the wire, toward it; D. Perpendicular to the wire, away from it; E. There is no magnetic force...
When at rest, a proton experiences a net electromagnetic force of magnitude 8.5×10−13 N pointing in...
When at rest, a proton experiences a net electromagnetic force of magnitude 8.5×10−13 N pointing in the positive x direction. When the proton moves with a speed of 1.4×106 m/s in the positive y direction, the net electromagnetic force on it decreases in magnitude to 7.5×10−13 N , still pointing in the positive x direction. PART A Find the magnitude of the electric field.    PART B Find the direction of the electric field. a. positive x direction b. negative...
a.) You set up a uniform magnetic field with a strength of 0.45 T, pointing along...
a.) You set up a uniform magnetic field with a strength of 0.45 T, pointing along the positive x-direction in your lab. You release a particle of charge 14.65 μC into the magnetic field region. It travels velocity 270i^+170j^+140k^ in units of m/s. Assuming that your instrument readings are working properly, what are the components of the magnetic force at the moment you release the particle? b.) The particle's motion is helical, moving forward parallel to the xx-axis while turning...
Consider a rectangular "loop" of iron wire that is placed in a uniform magnetic field of...
Consider a rectangular "loop" of iron wire that is placed in a uniform magnetic field of magnitude 29T  pointing in the positive z -direction. At t=  4s , the ring is sitting in a magnetic field pointing in the positive z -direction whose magnitude changes linearly from 15T  at t=  4s  to 26T  at t=  9s . In which direction does the induced magnetic field coming from the induced current in the ring point at t=  6.5s ? In the positive x -direction. In the negative x -direction....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT