Question

Suppose a 0.250 kg ball is thrown at 13.0 m/s to a motionless person standing on...

Suppose a 0.250 kg ball is thrown at 13.0 m/s to a motionless person standing on ice who catches it with an outstretched arm as shown in Figure 9.31.
(a) Calculate the final linear velocity of the person, given his mass is 80.0 kg.
(b) What is his angular velocity if each arm has a 5.00 kg mass? You may treat his arms as uniform rods of length 0.9 m and the rest of his body as a uniform cylinder of radius 0.190 m. Neglect the effect of the ball on his rotational inertia and on his center of mass, so that it remains in his geometrical center.
(c) Compare the initial and final total kinetic energy.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a 0.250 kg ball is thrown at 13.0 m/s to a motionless person standing on...
Suppose a 0.250 kg ball is thrown at 13.0 m/s to a motionless person standing on ice who catches it with an outstretched arm as shown in Figure 9.31. Figure 9.31. (a) Calculate the final linear velocity of the person, given his mass is 76.0 kg: This is the answer: .043 m/s (I know this).   (b) What is his angular velocity if each arm has a 5.00 kg mass? You may treat his arms as uniform rods of length 0.9...
A ball with mass m kg is thrown upward with initial velocity 16 m/s from the...
A ball with mass m kg is thrown upward with initial velocity 16 m/s from the roof of a building 28 m high. Neglect air resistance. Use 9.8 m/s2. Round your answers to one decimal place. (a) Find the maximum height above the ground that the ball reaches. meters (b) Assuming that the ball misses the building on the way down, find the time that it hits the ground.
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides...
A ball of mass 0.250 kg that is moving with a speed of 5.5 m/s collides head-on and elastically with another ball initially at rest. Immediately after the collision, the incoming ball bounces backward with a speed of 3.1 m/s . Calculate the velocity of the target ball after the collision. Calculate the mass of the target ball.
A person with mass mp=80 kg is standing at rest on a horizontal, frictionless surface holding...
A person with mass mp=80 kg is standing at rest on a horizontal, frictionless surface holding a ball of wet clay with mass mg=10 kg . In front of the person is a large block with mass M=20 kg at rest next to a spring with stiffness k=100 N/m . The person throws the ball horizontally, it sticks to the block, and then ball and block slide and compress the spring a distance 1=0.75 m away from equilibrium before the...
A student sitting on a frictionless rotating stool has rotational inertia 0.96 kg⋅m2 about a vertical...
A student sitting on a frictionless rotating stool has rotational inertia 0.96 kg⋅m2 about a vertical axis through her center of mass when her arms are tight to her chest. The stool rotates at 7.35 rad/s and has negligible mass. The student extends her arms until her hands, each holding a 5.0 kg mass, are 0.80 m from the rotation axis. Ignoring her arm mass, what's her new rotational velocity? Repeat if each arm is modeled as a 0.80 m...
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a...
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a ball of mass m2=0.800 kg that is initially at rest. No external forces act on the balls. a. Show what is conserved through the appropriate formula if the collision is elastic. b. What are the velocities of the balls after the collision?
As part of a carnival game, a 0.528-kg ball is thrown at a stack of 18.8-cm...
As part of a carnival game, a 0.528-kg ball is thrown at a stack of 18.8-cm tall, 0.383-kg objects and hits with a perfectly horizontal velocity of 12.8 m/s. Suppose the ball strikes the topmost object as shown to the right. Immediately after the collision, the ball has a horizontal velocity of 3.60 m/s in the same direction, the topmost object now has an angular velocity of 1.63 rad/s about its center of mass and all the objects below are...
A 116 kg football player is running at 8.05 m/s. A hard-thrown 0.410 kg football has...
A 116 kg football player is running at 8.05 m/s. A hard-thrown 0.410 kg football has a speed of 23.5 m/s. (Assume the football player is running in the +x-direction.) Assuming that the football player catches the ball with his feet off the ground with both of them moving horizontally, calculate the following. (a) the final velocity (in m/s) if the ball and player are going in the same direction (Indicate the direction with the sign of your answer. Enter...
A 2.0 kg ball is thrown upward with an initial speed of 21.0 m/s from the...
A 2.0 kg ball is thrown upward with an initial speed of 21.0 m/s from the edge of a 48.0 m high cliff. At the instant the ball is thrown, a woman starts running away from the base of the cliff with a constant speed of 5.80 m/s. The woman runs in a straight line on level ground. Ignore air resistance on the ball. How far does she run before she catches the ball? (Your result must be in units...
A billiard ball of mass m = 0.250 kg hits the cushion of a billiard table...
A billiard ball of mass m = 0.250 kg hits the cushion of a billiard table and rebounds. The ball’s velocity before it hits the cushion is 20.0 m/s making an angle of 60.0o with respect to the normal. The glancing blow leaves the ball with a velocity of 12.0 m/s at 71.0o to the other side of the normal. (a) What is the magnitude of the change of momentum of the ball? (b) What is the direction of the...