Question

A block with mass m = 14.6 kg slides down an inclined plane of slope angle...

A block with mass m = 14.6 kg slides down an inclined plane of slope angle 15.8 ° with a constant velocity. It is then projected up the same plane with an initial speed 4.35 m/s. How far up the incline will the block move before coming to rest?

Homework Answers

Answer #1

Here, frictional force = mgsin15.8

                               = 14.6 * 9.8 * sin15.8

                               = 38.96 N

Applying conservation of energy

=> 1/2 * 14.6 * 4.352 - 38.96 * s = 14.6 * 9.8 * sin15.8 * s

=> s = 1.773 m

Thus, far up the incline will the block move before coming to rest =   1.773 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If a block of mass 10 kg slides down an inclined plane having an angle of...
If a block of mass 10 kg slides down an inclined plane having an angle of 30 degrees above the horizon,at the end of the inclined plane there is a frictionless surface on the end of it lies a spring having spring constant 500N/m.There is friction on the inclined plane,Find the coefficient of kinetic friction of the inclined plane. when the block reaches the spring,it compresses it by 0.40m Let the block start from rest and the height be 20...
A box with a mass of 8.55 kg slides up a ramp inclined at an angle...
A box with a mass of 8.55 kg slides up a ramp inclined at an angle of 27.0° with the horizontal. The initial speed is 1.68 m/s and the coefficient of kinetic friction between the block and the ramp is 0.54. Determine the distance (in m) the block slides before coming to rest.
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at 30.0° with the horizontal. The block slides some distance up the incline, stops turns around and slides back down to the bottom. When it reaches the bottom of the incline again, it is traveling with a speed of 3.80 m/s. If the coefficient of kinetic friction between the block and the plane is 0.500, how far up the incline did the block slide?
A 3.00 kg block slides down a 37.0 degree inclined plane. If the acceleration of the...
A 3.00 kg block slides down a 37.0 degree inclined plane. If the acceleration of the block is 1.52 m/s2, a) the force of kinetic friction on the block. b) the normal force on the block. c) the coefficient of kinetic friction on the block. d) the angle needed to make the block slide down the incline at a constant speed.
2. A block slides down a plane inclined at 35o with respect to the horizontal, with...
2. A block slides down a plane inclined at 35o with respect to the horizontal, with coefficient of kinetic friction 0.2. Find the ratio of the time taken to slide down the plane starting from rest, compared to the time it would take to slide down the plane if it were frictionless. 3. A 20 kg block slides frictionlessly down an inclined plane that is 2.8 m long and 1.2 m high. A person pushes up against the block, parallel...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at...
A 4.25 kg block is projected at 5.40 m/s up a plane that is inclined at 30.0° with the horizontal. The block slides some distance up the incline, stops turns around and slides back down to the bottom. When it reaches the bottom of the incline again, it is traveling with a speed of 3.80 m/s. If the coefficient of kinetic friction between the block and the plane is 0.500, how far up the incline did the block slide? Please...
A block of mass 4.8 kg slides 24 m from rest down an inclined plane making...
A block of mass 4.8 kg slides 24 m from rest down an inclined plane making an angle of 24 o with the horizontal. If the block takes 10 s to slide down the plane, what is the retarding force due to friction?
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at an angle of 25.3 ∘ with the horizontal. The coefficient of kinetic friction between the block and the ramp is 0.87. Use energy conservation to find the distance the block slides before coming to rest.
A box with 10 kg of mass slides down an inclined plane that is 1.7 m...
A box with 10 kg of mass slides down an inclined plane that is 1.7 m high and 3.5 m long. Due to friction the box reaches 3.0 m/s at the bottom of the inclined plane. Beyond the inclined plane lies a spring with 650 N/m constant. It is fixed at its right end. The level ground between the incline and the spring has no friction The box compressed the spring, got pushed back towards the incline by the spring....
A box with 11 kg of mass slides down an inclined plane that is 2.0 m...
A box with 11 kg of mass slides down an inclined plane that is 2.0 m high and 3.5 m long. Due to friction the box reaches 3.3 m/s at the bottom of the inclined plane. Beyond the inclined plane lies a spring with 650 N/m constant. It is fixed at its right end. The level ground between the incline and the spring has no friction The box compressed the spring, got pushed back towards the incline by the spring....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT