Question

QUESTION When an electron is released from rest in a constant electric field, how does the...

QUESTION When an electron is released from rest in a constant electric field, how does the electric potential energy associated with the electron, and the kinetic energy of the electron, change with time? (Select all that apply.)
options:The electric potential energy becomes more negative.The electric potential energy becomes more positive.The kinetic energy becomes more negative.The kinetic energy stays the same.The electric potential energy stays the same.The kinetic energy becomes more positive.

Use the worked example above to help you solve this problem. A proton is released from rest at x = -2.90 cm in a constant electric field with magnitude 1.49  103 N/C, pointing in the positive x-direction.
(a) Calculate the change in potential energy when the proton reaches x = 5.34 cm.

(b) An electron is now fired in the same direction from the same position. What is its change in electric potential energy if it reaches x = 12.50 cm?

(c) If the direction of the electric field is reversed and an electron is released from rest at x = 3.40 cm, by how much has its electric potential energy changed when it reaches x = 7.10 cm?

Find the change in electric potential energy associated with the electron in part (b) as it goes on from x = 0.125 to x = -0.018 m. (Note that the electron must turn around and go back at some point. The location of the turning point is unimportant, because changes in potential energy depend only on the end points of the path.)

Homework Answers

Answer #1

Solution in the uploaded image

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron is initially at rest in a uniform electric field having a strength of 1.95...
An electron is initially at rest in a uniform electric field having a strength of 1.95 × 106 V/m. It is then released and accelerated by the presence of the electric field. What is the change in the electron’s kinetic energy, in kiloelectron volts, if it travels over a distance of 0.25 m in this field? Over how many kilometers would it have to be accelerated in the same electric field to increase its kinetic energy by 65 GeV? &...
A uniform electric field of magnitude 364 N/C pointing in the positive x-direction acts on an...
A uniform electric field of magnitude 364 N/C pointing in the positive x-direction acts on an electron, which is initially at rest. The electron has moved 3.00 cm. (a) What is the work done by the field on the electron? (b) What is the change in potential energy associated with the electron? (c) What is the velocity of the electron? Magnitude (m/s) ? Direction (+x, -x, -y, +y)?
please explain why!! 1. An electron is released from rest in a region of space with...
please explain why!! 1. An electron is released from rest in a region of space with a nonzero electric field. As the electron moves, does the electric potential energy of the system increase or decrease? Explain. 2. An electron is released from rest in a region of space with a nonzero electric field. As the electron moves, does the electron move from a position of high to low electric potential? Explain.
A proton is released from rest in a uniform electric field of magnitude 1.33×105 N/C ....
A proton is released from rest in a uniform electric field of magnitude 1.33×105 N/C . Find the speed of the proton after it has traveled (a) 1.40 cm and (b) 13.0 cm .
proton is released from rest inside a region of constant, uniform electric field E1 pointing due...
proton is released from rest inside a region of constant, uniform electric field E1 pointing due North. 34.8 seconds after it is released, the electric field instantaneously changes to a constant, uniform electric field E2 pointing due South. 9.33 seconds after the field changes, the proton has returned to its starting point. What is the ratio of the magnitude of E2 to the magnitude of E1? You may neglect the effects of gravity on the proton.
Problem 2 The distance between the two plates of a parallel plate capacitor is 5 cm....
Problem 2 The distance between the two plates of a parallel plate capacitor is 5 cm. The electric potential difference between the two plates is V= 6.0 v.   A proton is released from rest from the positive plate of a capacitor. q = 1.60 × 10-19 C, m electron = 1.67 × 10-27 kg, Show formulas, substitution, and calculation with units. Hint: You need to write the relation between Electric potential energy ( q V)and kinetic energy. ( K= ½...
A proton and an electron are released from rest at the same time from the midpoint...
A proton and an electron are released from rest at the same time from the midpoint between two charged parallel plates. The plates are charged with equal surface charge densities of opposite signs. Ignore the interaction between the electron and the proton and consider only the interaction of each charge with the electric field of the plates. After being released, the proton will accelerate toward the negative plate, and the electron will accelerate toward the positive plate. a) Which charge...
A proton is acted on by an uniform electric field of magnitude 443 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 443 N/C pointing in the negative x direction. The particle is initially at rest. (a) In what direction will the charge move? ---Select--- +x direction ?x direction +y direction ?y direction +z direction ?z direction (b) Determine the work done by the electric field when the particle has moved through a distance of 3.15 cm from its initial position. J (c) Determine the change in electric potential energy...
An electron at rest in a vacuum is accelerated by a momentary electric field E =...
An electron at rest in a vacuum is accelerated by a momentary electric field E = 438 V/m y for 325 microseconds*. Then it enters a magnetic field of B = 257 microTesla* x. Determine the direction of the initial force that the electron feels when it enters the magnetic field. * refers to the units of time and magnetic field. Bold in 'x' and 'y' refers to the axis/direction.
A proton is acted on by an uniform electric field of magnitude 193 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 193 N/C pointing in the negative z direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 2.65 cm from its initial position. ____J (c) Determine the change in electric potential energy of the charged particle. _____J (d) Determine the speed of the charged particle.