Question

Three concentric spherical conductive shells of radii 5 cm, 10 cm, and 15 cm are charged...

Three concentric spherical conductive shells of radii 5 cm, 10 cm, and 15 cm are charged with 2 μC, 4 μC, and -6 μC, respectively. What is the electric field at r=2.5 cm, r=12 cm, and r=20 cm?

E1= ________________ V/m

E2= ________________ V/m

E3= ________________ V/m

What are the electric potentials at these points?

V1=___________V

V2=___________V

V3=___________V

Homework Answers

Answer #1

Charge per Unit area is given by

Finding the Charge per Unit area for each spherical shell;

Electric Field is given by,

Finding the Electric field;

Here 2.5 cm < 5cm That is r < R . There is no electric field inside a charged electric shell.

Electric potential is given by,

Inside and at the surface of shell

Outside the shell

FInding Electric potential;

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three concentric spherical conductive shells of radii 5 cm, 10 cm, and 15 cm are charged...
Three concentric spherical conductive shells of radii 5 cm, 10 cm, and 15 cm are charged with 9 μC, 15 μC, and -23 μC, respectively. What is the electric field at r=2.5 cm, r=12 cm, and r=20 cm? E1=___V/m E2=___V/m E3=___V/m What are the electric potentials at these points? V1=_____ V2=_____ V3=_____
Four concentric spherical conductive shells of radii 5 cm, 10 cm, 15 cm, and 20 cm...
Four concentric spherical conductive shells of radii 5 cm, 10 cm, 15 cm, and 20 cm are charged with 4 μC, 7 μC, -15 μC, and -5 μC, respectively. What is the electric field at r=3.5 cm, r=16 cm, and r=25 cm? E1=_________V/m E2=_________V/m E3=_________V/m What are the electric potentials at these points? V1=__________V V2=__________V V3=__________V
three concentric spherical conductive shells of radii 5cm, 10cm, and 15cm are charged with 4 uC,...
three concentric spherical conductive shells of radii 5cm, 10cm, and 15cm are charged with 4 uC, 5 uC, and -9 uC respectively, what is the electric field at r=2.5cm, r=12cm, and r=20cm? what are the electic potentials at these points?
Two concentric conductive spherical shells with radii 5 and 10 cm are initially charged with 10...
Two concentric conductive spherical shells with radii 5 and 10 cm are initially charged with 10 and -5uC, respectively. Now, the spheres are connected with a conducting wire. After some time, what is the electric potential at a point 20 cm away from the origin?
A point charge of -12 μC is located at the origin, which is the center of...
A point charge of -12 μC is located at the origin, which is the center of a thin spherical shell of 10 cm radius. This shell is uniformly charged with 4 μC. What is the electric field at r=5 cm and r=15? E1 = V/m, E2= V/m. What is the electric potential at these points? V1 = V, V2= V.
A point charge of 24 μC is located at the origin, which is the center of...
A point charge of 24 μC is located at the origin, which is the center of a thin spherical shell of 10 cm radius. This shell is uniformly charged with 16 μC. What is the electric field at r=5 cm and r=15? E1= ______ V/m E2= ______V/m What is the electric potential at these points? V1= ____ V V2= ____ V
A point charge of -6 μC is located at the origin, which is the center of...
A point charge of -6 μC is located at the origin, which is the center of a thin spherical shell of 10 cm radius. This shell is uniformly charged with 17 μC. What is the electric field at r=5 cm and r=15? E1=________V/m E2=________V/m What is the electric potential at these points? V1=________V V2=________V
Consider two concentric spherical shells with different radii, namely one is inside the other. The spherical...
Consider two concentric spherical shells with different radii, namely one is inside the other. The spherical shell inside has radius R1 = 7.00 cm and charge q1 = +3.00×10^-6 C; the spherical shell outside has radius R2 = 17.0 cm and charge q2 = −5.00×10^-6 C. For both shells charges are distributed uniformly over their surfaces. Assume that V = 0 at large distances from both shells. A) Find the electric potential of the two shells at the distance r...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge per unit length is 3.55 × 10-6 C/m on the inner shell and 8.56 × 10-6 C/m on the outer shell. What is the magnitude electric field of E at a radial distance r = 6.39 cm??
The space between two concentric conducting spherical shells of radii b = 1.70 cm and a...
The space between two concentric conducting spherical shells of radii b = 1.70 cm and a = 1.00 cm is filled with a substance of dielectric constant κ = 15.1. A potential difference V = 65.0 V is applied across the inner and outer shells. Determine (a) the capacitance of the device, (b) the free charge q on the inner shell, and (c) the charge q induced along the surface of the inner shell.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT