Question

A skateboarder starts up a 1.0-m-high, 30∘ ramp at a speed of 5.2 m/s . The...

A skateboarder starts up a 1.0-m-high, 30∘ ramp at a speed of 5.2 m/s . The skateboard wheels roll without friction. At the top, she leaves the ramp and sails through the air.

Part A

How far from the end of the ramp does the skateboarder touch down?

Homework Answers

Answer #1

use conservation of energy to find the launch velocity, then basic kinematics.

conservation of energy gives us
initial KE = final KE + final PE
which after dividing through by mass/2 gives
Vi² = Vf² + 2gh
(5.2 m/s)² = Vf² + 2*9.8m/s²*1m
Vf = 2.72 m/s

Now we have the launch velocity, and we know the launch angle = 30º
Vertically, Vy = Vf*sinΘ = 2.72 m/s * sin30º = 1.36 m/s
s = So + Vy*t + ½at²
0 = 1m + 1.36 m/s*t - 4.9m/s²*t²

4.9*t² - 1.36*t - 1 = 0
This quadratic has roots at t = -0.33 s ← not possible
and t = 0.61 s ← time of flight

Then horizontally we have
x = Vx*t = Vf*cosΘ*t = 2.72 m/s * cos30º * 0.61 s = 1.44 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A skateboarder starts up a 1.0-m-high, 30? ramp at a speed of 7.2 m/s . The...
A skateboarder starts up a 1.0-m-high, 30? ramp at a speed of 7.2 m/s . The skateboard wheels roll without friction. At the top, she leaves the ramp and sails through the air. How far from the end of the ramp does the skateboarder touch down? Express your answer to two significant figures and include the appropriate units.
A skateboarder shoots off a ramp with a velocity of 7.2 m/s, directed at an angle...
A skateboarder shoots off a ramp with a velocity of 7.2 m/s, directed at an angle of 59° above the horizontal. The end of the ramp is 1.0 m above the ground. Let the x axis be parallel to the ground, the +y direction be vertically upward, and take as the origin the point on the ground directly below the top of the ramp. (a) How high above the ground is the highest point that the skateboarder reaches? (b) When...
The wheels of a skateboard roll without slipping as it accelerates at 0.30 m/s2 down an...
The wheels of a skateboard roll without slipping as it accelerates at 0.30 m/s2 down an 75-m-long hill. If the skateboarder travels at 1.7 m/s at the top of the hill, what is the average angular speed of the 2.6-cm-radius wheels during the entire trip down the hill? Express your answer to two significant figures and include appropriate units.
A 57.8-kg skateboarder starts out with a speed of 1.98 m/s. He does 82.3 J of...
A 57.8-kg skateboarder starts out with a speed of 1.98 m/s. He does 82.3 J of work on himself by pushing with his feet against the ground. In addition, friction does -232 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 8.47 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give...
A 51.8-kg skateboarder starts out with a speed of 2.28 m/s. He does 105 J of...
A 51.8-kg skateboarder starts out with a speed of 2.28 m/s. He does 105 J of work on himself by pushing with his feet against the ground. In addition, friction does -251 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 6.36 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give...
A 61.5-kg skateboarder starts out with a speed of 1.71 m/s. He does 105 J of...
A 61.5-kg skateboarder starts out with a speed of 1.71 m/s. He does 105 J of work on himself by pushing with his feet against the ground. In addition, friction does -298 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 5.93 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give...
A 63.3-kg skateboarder starts out with a speed of 1.67 m/s. He does 81.1 J of...
A 63.3-kg skateboarder starts out with a speed of 1.67 m/s. He does 81.1 J of work on himself by pushing with his feet against the ground. In addition, friction does -280 J of work on him. In both cases, the forces doing the work are non-conservative. The final speed of the skateboarder is 6.37 m/s. (a) Calculate the change (PEf - PE0) in the gravitational potential energy. (b) How much has the vertical height of the skater changed? Give...
A little confused on these Motion problems: An airplane with a speed of 95.3 m/s is...
A little confused on these Motion problems: An airplane with a speed of 95.3 m/s is climbing upward at an angle of 38.1 ° with respect to the horizontal. When the plane's altitude is 542 m, the pilot releases a package. (a) Calculate the distance along the ground, measured from a point directly beneath the point of release, to where the package hits the earth. (b) Relative to the ground, determine the angle of the velocity vector of the package...
10 kg point mass located at the top of a 1.50 m inclined ramp that is...
10 kg point mass located at the top of a 1.50 m inclined ramp that is without friction. The ramp makes a 30 degree angle with the horizontal. The bottom half of the ramp is on a table and is 0.66 m above the ground. When mass is released from rest, it slides down the ramp ( a=4.9 m/s2 ) & off the table, then goes through the air until it hits the ground. (table & ramp don't move) The...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp that makes an angle of 36.2 ^\circ ∘ below the horizontal. After it slides without friction down the entire 2.89 m length of the ramp, it begins to slide horizontally along a rough concrete surface with a coefficient of kinetic friction of \mu_kμ k = 0.503 until it slows to a complete stop. How far does the block slide horizontally along the concrete before...