Question

A 500 nm laser shines through 2 slits separated by 1 mm producing interference fringes on...

A 500 nm laser shines through 2 slits separated by 1 mm producing interference fringes on a screen 3 m away.

1) Calculate spacing between fringes in mm

2) if laser power decreases, will this increase/decrease/same for fringe spacing?

3) If laser power= 1 mW, calculate number of photons that hit the screen in 1 second

4) Calculate time it takes a photon to travel from slits to screen in ns

5) Calculate how low laser power needs to be in pW to prove that a photon interferes with itself instead of other photons

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two slits are separated by 0.320 mm. A beam of 482.0 nm light strikes the slits,...
Two slits are separated by 0.320 mm. A beam of 482.0 nm light strikes the slits, producing an interference pattern on a screen. The screen is located 2.30 m from the slits. Find the distance from the first dark fringe on one side of the central maximum to the second dark fringe on the other side. Please write clearly and legibly!
Light of wavelength 500 nm shines on two slits separated by 0.3 mm. Find the intensity...
Light of wavelength 500 nm shines on two slits separated by 0.3 mm. Find the intensity ratio I/Io at positions 0.6 mm and -0.5 mm from the central maximum on a screen 1m from the slits.
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 9.10 cm away from the central bright fringe. Calculate the distance between the two slits. First you have to calculate the angle of the maximum. Then you can use the formula for bright fringes of double slits. Incorrect. Tries 2/20 Previous Tries The screen...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of 500 nm. An interference pattern is observed on a screen 1.20 m from the slits. (a) Draw the diagram of the double slits and determine how far apart will adjacent bright interference fringes on the screen? (b) What are the angles of the first and second order fringes with respect to the zeroth order fringe? (c) Determine the position of the first and second...
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation...
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation of 0.04 mm and falls on a screen 60 cm behind the slits. (a) Find the positions of the 1 st and 2nd order bright fringes respected to the center on the screen. (b) Find the position of the 1 st -order dark fringe respected to the center on the screen.
4) Two narrow slits are separated by a distance d. Their interference pattern is to be...
4) Two narrow slits are separated by a distance d. Their interference pattern is to be observed on a screen a large distance L away. a) Calculate the spacing y of the maxima of the screen for light of wavelength 500 nm when L = 1 m and d = 1 cm. b) Would you expect to observe the interference of light on the screen for this situation? Explain. c) How close together should the slits be placed for the...
Two narrow slits are illuminated by a laser with a wavelength of 543 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 543 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 7.20 cm away from the central bright fringe. Calculate the distance between the two slits. ("1st order" means m=1, "second order" means m=2, etc).
Interference with light We aim a red (620 nm) laser onto a small screen that has...
Interference with light We aim a red (620 nm) laser onto a small screen that has two slits that are 0.1 mm apart. Each slit has a width of 0.03 mm. The light coming out of the two slits is projected onto a big screen a distance X from the slits. In the photo on the right you can see the pattern that’s visible on the big screen. Using a ruler, we determine that the distance between two adjacent bright...
Orange light with ? = 615 nm strikes a pair of slits separated by 0.620 mm...
Orange light with ? = 615 nm strikes a pair of slits separated by 0.620 mm . Part A: On a screen 1.40 m away, what's the distance between the central maximum and one of the fourth dark fringes? Part B: On a screen 1.40 m away, what's the distance between the third bright fringe on one side of the central maximum and the third dark fringe on the other? Express your answer with the appropriate units.
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern is observed on a screen at a distance 1.50 m away. (a) What is the vertical distance of the second maximum (not counting the central maximum) from the center of the interference pattern? (b) At what distance from the center does the intensity fall to 1/4th of the intensity at the center?