Question

1.Transverse waves are traveling on a long string that is under a tension of 7.00 N...

1.Transverse waves are traveling on a long string that is under a tension of 7.00 N . The equation describing these waves is y(x,t)=( 7.20 cm)sin[( 415 s−1)t−( 45.6 m−1)x] To what quantity does the value of 2π/(45.6 m−1) correspond?

2.Transverse waves are traveling on a long string that is under a tension of 7.00 N . The equation describing these waves is

y(x,t)=( 7.20 cm)sin[( 415 s−1)t−( 45.6 m−1)x]

To what quantity does the value of 2π∗415 s−1 correspond?

3.Transverse waves are traveling on a long string that is under a tension of 7.00 N . The equation describing these waves is

y(x,t)=( 7.20 cm)sin[( 415 s−1)t−( 45.6 m−1)x]

To what quantity does the value of  45.6 m−1 correspond?

4.For a simple harmonic oscillator, what fraction of the total energy is kinetic energy when the oscillator is at one-half of the amplitude?

Homework Answers

Answer #1

I hope it helps you.

Thanks for asking.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
the equation of a transverse wave traveling in a string is given by y=a sin(k x??t)....
the equation of a transverse wave traveling in a string is given by y=a sin(k x??t). the tension in the string is 20.0 n, a = 2 mm, k = 30 rad/m, ? = 850 rad/s. what is the wave speed? what is the linear density of the string?
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30 mm Wavelength of the wave = 0.128 m Speed of the wave = 328 m/s a) Determine the time for a particle of the string to move through a total distance of 1.50 km. in s b) If the string is held under a tension of 982 N, determine its linear density. in g/m
Waves are traveling on a very long string. A 1.54 m long piece of this string...
Waves are traveling on a very long string. A 1.54 m long piece of this string has a mass of 0.00311kg. The speed of the waves is 8.26 m/s; it takes 1.76s for 25 waves to pass by an observer. Calculate: a) the frequency of the waves, b) the wavelength of the waves, c) the tension on the string, d) the wavelength of the waves on the string if the source is the same but the tension on the string...
A transverse wave is traveling on a string. The displacement y of a particle from its...
A transverse wave is traveling on a string. The displacement y of a particle from its equilibrium position is given by y = (0.021 m) sin(25t - 2.0x). Note that the phase angle 25t - 2.0x is in radians, t is in seconds, and x is in meters. The linear density of the string is 2.3 × 10-2 kg/m. What is the tension in the string?
1.). Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes...
1.). Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 4.00 cm, a wavelength of 3.50 m, and a period of 6.25 s, but one has a phase shift of an angle φ. What is the phase shift (in rad) if the resultant wave has an amplitude of 4.00 cm? Hint: Use the trig identity 2.). Consider two sinusoidal sine waves traveling along a string, modeled as y1(x, t) = (0.2 m)sin[(6 m−1)x...
Choose the y-equation for a wave traveling in the negative x-direction with wavelength 50 cm ,...
Choose the y-equation for a wave traveling in the negative x-direction with wavelength 50 cm , speed 3.0 m/s , and amplitude 6.0 cm . Choose the y-equation for a wave traveling in the negative x-direction with wavelength 50 {\rm \;cm} , speed 3.0 {\rm \;m/s} , and amplitude 6.0 {\rm \;cm} . 1)    y=( 6.0 cm )sin(2π(x/( 50 cm )+( 6.00 s−1 )t)) 2)    y=( 6.0 cm )sin(2π( 50 cm )x−( 6.00 s−1 )t)) 3)    y=( 6.0 cm )sin(2π(x/(...
A 1.2 m guitar string is under a tension of 888 N. The waves produced on...
A 1.2 m guitar string is under a tension of 888 N. The waves produced on the string (when plucked) travel with a speed of 444 m/s. What is the mass of this string?
1. A wave train is traveling along a string. Seven waves pass by a point in...
1. A wave train is traveling along a string. Seven waves pass by a point in 3.75 s. The distance from the top of a crest to the bottom of an adjacent trough is 0.462 cm. Find: a) the speed of the waves. b) the tension in the string if it has a length of 1.68 m and a mass of 3.86 g. 2. Suppose that the string in problem #1 is attached to a second string whose linear density...
A transverse sinusoidal wave is moving along a string in the positive direction of an x...
A transverse sinusoidal wave is moving along a string in the positive direction of an x axis with a speed of 93 m/s. At t = 0, the string particle at x = 0 has a transverse displacement of 4.0 cm from its equilibrium position and is not moving. The maximum transverse speed of the string particle at x = 0 is 16 m/s. (a) What is the frequency of the wave? (b) What is the wavelength of the wave?...
Two waves are traveling in opposite directions on the same string. The displacements caused by the...
Two waves are traveling in opposite directions on the same string. The displacements caused by the individiual waves are given by y1=(27.0 mm)sin(5.07πt - 1.72πx) and y2=(38.0 mm)sin(2.14πt + 0.229πx). Note that the phase angles (5.07πt - 1.72πx) and (2.14πt + 0.229πx) are in radians, t is in seconds, and x is in meters. At t = 5.90 s, what is the net displacement (in mm) of the string at (a) x = 2.30 m and (b) x = 2.99...