Question

A thin uniform rod with mass m swings about an axis that passes through one end...

A thin uniform rod with mass m swings about an axis that passes through one end of the rod and is perpendicular to the plane of the swing. The rod swings with a period T and an angular amplitude of φm (assume this angle is sufficiently small to allow for the use of the equations in this chapter). (a) What is the length of the rod? (b) What is the maximum kinetic energy of the rod as it swings? State your answers in terms of the given variables, using g and π when applicable. (a)L = (b)Km =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform thin rod of length 0.56 m and mass 3.2 kg can rotate in a...
A uniform thin rod of length 0.56 m and mass 3.2 kg can rotate in a horizontal plane about a vertical axis through its center. The rod is at rest when a 3.5 g bullet traveling in the rotation plane is fired into one end of the rod. As viewed from above, the bullet's path makes angle θ = 60° with the rod. If the bullet lodges in the rod and the angular velocity of the rod is 12.0 rad/s...
A uniform rod of length L and mass M is free to swing about an axis...
A uniform rod of length L and mass M is free to swing about an axis that is perpendicular to the rod. The axis is a distance x from the rod's center of mass. a) Find the period of oscillations for small angles as a function of L and x with appropriate constants. b) make a sketch of the period as a function of x. If you use a spread sheet you may assume that L=1.0 m, then your graph...
A thin uniform rod has a length of 0.490 m and is rotating in a circle...
A thin uniform rod has a length of 0.490 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.37 rad/s and a moment of inertia about the axis of 3.50×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A uniform thin rod of length 0.766 m is hung from a horizontal nail passing through...
A uniform thin rod of length 0.766 m is hung from a horizontal nail passing through a small hole in the rod located 0.044 m from the rod's end. When the rod is set swinging about the nail at small amplitude, what is the period T of oscillation? T=______ s
An object is formed by attaching a uniform, thin rod with a mass of mr =...
An object is formed by attaching a uniform, thin rod with a mass of mr = 7.22 kg and length L = 5.52 m to a uniform sphere with mass ms = 36.1 kg and radius R = 1.38 m. Note ms = 5mr and L = 4R. 1)What is the moment of inertia of the object about an axis at the left end of the rod? 2)If the object is fixed at the left end of the rod, what...
A thin uniform rod has a length of 0.430 m and is rotating in a circle...
A thin uniform rod has a length of 0.430 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.32 rad/s and a moment of inertia about the axis of 3.20×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A uniform rod of mass M and length L is pivoted at one end. The rod...
A uniform rod of mass M and length L is pivoted at one end. The rod is left to freely rotate under the influence of its own weight. Find its angular acceleration α when it makes an angle 30° with the vertical axis. Solve for M=1 Kg, L=1 m, take g=10 m s-2. Hint: Find the center of mass for the rod, and calculate the torque, then apply Newton as τ= Ι·α 
A uniform rod of mass M and length L is pivoted at one end. The rod...
A uniform rod of mass M and length L is pivoted at one end. The rod is left to freely rotate under the influence of its own weight. Find its angular acceleration α when it makes an angle 30° with the vertical axis. Solve for M=1 Kg, L=1 m, take g=10 m s-2. Your answer in X.X rad s-2. Hint: Find the center of mass for the rod, and calculate the torque, then apply Newton as τ= Ι·α
A uniform rod of mass 250 g and length 75 cm is free to rotate in...
A uniform rod of mass 250 g and length 75 cm is free to rotate in a horizontal plane around a fixed vertical axis through its center, perpendicular to its length. Two small beads, each of mass 25 g, are mounted in grooves along the rod. Initially, the two beads are held by catches on opposite sides of the rod’s center, 9 cm from the axis of rotation. With the beads in this position, the rod is rotating with an...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis with one end at the origin. (a) Find its moment of inertia tensor about the origin. (b) Find the moment of inertia tensor if the rod’s center is located at the origin.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT