Question

1.Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls...

1.Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls on a screen 1.75 m away. Find the linear distance on the screen from the central bright fringe to the first bright fringe above it._________cm

2. A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 21.0 cm . A diverging lens, with a focal length f2 = -42.5 cm , is placed 30.0 cm to the right of the first lens. How tall is the final image of the object?________cm

Homework Answers

Answer #1

The exact solution is

y = D*tan(theta)

= 0.572974 m, where theta = arcsin(m*lambda/a) =arcsin(1*626*10-9/7.74*10-6)= 0.08087 rad.

solution is y = D*tan(theta)

=1.75*tan(0.08087)

= 0.02470 m

2)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls...
Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls on a screen 1.75 m away. Find the linear distance on the screen from the central bright fringe to the first bright fringe above it. ________cm
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a...
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 21.0 cm . A diverging lens, with a focal length f2 = -42.5 cm , is placed 30.0 cm to the right of the first lens. How tall is the final image of the object?________cm
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a...
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 20.5 cm . A diverging lens, with a focal length f2 = -42.5 cm , is placed 30.0 cm to the right of the first lens. Q:How tall is the final image of the object?
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a...
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 20.0 cm . A diverging lens, with a focal length f2 = -50.0 cm , is placed 30.0 cm to the right of the first lens. You may want to review (Pages 959 - 966) . How tall is the final image of the object?
Monochromatic light with a 462 nm wavelength passes through a 750 μm wide single slit on...
Monochromatic light with a 462 nm wavelength passes through a 750 μm wide single slit on its way to a viewing screen 2.51 m beyond the slit. A converging lens with focal length f = 4.92 m is placed directly behind the slit. Determine the width of the central maximum with the added lens. You may assume the small angle approximation applies.
Light with a wavelength of 702 nm passes through a slit 7.50 ?m wide and falls...
Light with a wavelength of 702 nm passes through a slit 7.50 ?m wide and falls on a screen 2.05 m away. Find the linear distance on the screen from the central bright fringe to the first bright fringe above it. Express your answer to three significant figures.
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls...
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls on a screen 1.60 m away. Find the distance on the screen from the central bright fringe to the third dark fringe above it. ___ cm Monochromatic light passes through two slits separated by a distance of 0.0332 mm. If the angle to the third maximum above the central fringe is 3.21 degrees, what is the wavelength of the light? __ nm
Q1: Light of wavelength 720 nm is shone through a double slit. The angle that locates...
Q1: Light of wavelength 720 nm is shone through a double slit. The angle that locates the second dark fringe is 10.3 degrees. Calculate the angle that locates the first dark fringe. Q2: A woman stands 2.5 meters from a convex mirror with focal length -1.4 meters. If she is 1.7 meters tall, calculate the height of her reflection. Q3: An object is placed 6 cm away from a mirror of focal length 11 cm. Calculate the image distance.
Light of wavelength 644 nm passes through a slit 5.80 × 10-6 m wide and falls...
Light of wavelength 644 nm passes through a slit 5.80 × 10-6 m wide and falls on a screen that is 2.31 m away. What is the distance on the screen from the center of the central bright fringe to the thrid dark fringe on either side?
9. A diverging lens (f1 = −11.0 cm) is located 21.0 cm to the left of...
9. A diverging lens (f1 = −11.0 cm) is located 21.0 cm to the left of a converging lens (f2 = 23.5 cm). A 3.0-cm-tall object stands to the left of the diverging lens, exactly at its focal point. What is the height of the final image (including proper algebraic sign)? cm
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT