Question

A point charge has 2.65x108 more protons than electrons. a) Calculate the charge on the particle....

A point charge has 2.65x108 more protons than electrons. a) Calculate the charge on the particle. b) Calculate the electric field at a distance of 0.325 m from the point charge. c) Calculate the electric potential at a distance of 0.325 m from the point charge

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small particle has charge -4.90 μC and mass 2.10×10−4 kg . It moves from point...
A small particle has charge -4.90 μC and mass 2.10×10−4 kg . It moves from point A, where the electric potential is VA = 210 V , to point B, where the electric potential VB = 750 V is greater than the potential at point A. The electric force is the only force acting on the particle. The particle has a speed of 4.60 m/s at point A.
a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6...
a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 83 m/s. The only force acting on the particle is the electric force. What is the potential difference VB - VA between A and B? If VB is greater than VA, then give the answer as a positive number. If VB is less than VA,...
A helium nucleus (called an alpha particle) contains 2 neutrons and 2 protons with no electrons....
A helium nucleus (called an alpha particle) contains 2 neutrons and 2 protons with no electrons. If any electrons are added, there is a negligible amount of mass added but obviously one negative charge per electron is added. Three particles are injected into a constant B-field of 2T at a velocity of 3×106ms. The first particle is only the alpha particle (He++), the second particle is a nucleus with 1 electron (He+), and the third particle is a nucleus with...
A stationary point particle has a charge of 4.2x10-6 C. This particle is accelerated to a...
A stationary point particle has a charge of 4.2x10-6 C. This particle is accelerated to a velocity of 2.1x106 m/s by an external force under a potential difference ΔV=24 V, calculate the mass of this point particle.
1. A point charge - and a conducting solid sphere of charge density +a(C/m?) and radius...
1. A point charge - and a conducting solid sphere of charge density +a(C/m?) and radius a are shown in Figure I (centers of both charges are al 2a distance from the origin o) a) Draw the electric field vectors at the origin 0. (4 pts) b) Determine the direction and magnitude of the NET electric field E, at origin O. (11 pts) +(C/m?) e) Calculate the NET electric potential V at the origin O(10 pts)
1.A particle of charge ​q​ and mass ​m​ experiences a uniform electric field ​E​. If the...
1.A particle of charge ​q​ and mass ​m​ experiences a uniform electric field ​E​. If the particle starts at rest, find (a) its speed after it has travelled a distance ​d​ and (b) the magnitude of the electric potential difference through which it passed 2. Find the electric field of a uniformly charged solid sphere both inside and outside the sphere if the total charge is ​Q​0​ and the radius of the sphere is ​d​.
In a constant uniform electric field, a particle with charge −100 ?? is moved from the...
In a constant uniform electric field, a particle with charge −100 ?? is moved from the origin a distance ? = 0.80 ? straight in the direction of the electric field lines. The field has a strength of 5.0 ? ? . a) What is the voltage difference between the initial and final position? b) How much work is done to move the charge? c) Does the charge gain or lose electrical potential energy in the process of this move?...
Protons are released from rest in a Van de Graaff accelerator system. The protons initially are...
Protons are released from rest in a Van de Graaff accelerator system. The protons initially are located where the electric potential has a value of 5.95 MV and then they travel through a vacuum to a region where the potential is zero. (a) Find the final speed of these protons. m/s (b) Find the accelerating electric field strength if the potential changed uniformly over a distance of 2.60 m. MV/m
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m....
An electric field has an electric field strength 6000. N/C at a distance of 1.5 m. What is the strength of the field at a distance of 6.0 m? 24. An alpha (α) particle is positioned in an electric field such that the gravitational force acting on it is equal to the electrostatic force.              (qα = 3.2 x 10–19 C and mα = 6.64 x 10–27 kg) a) What is the direction of the electric field at this point?...
A point particle with charge q = 4.6 μC is placed on the x axis at...
A point particle with charge q = 4.6 μC is placed on the x axis at x = −10 cm and a second particle of charge Q = 7.0 μC is placed on the x axis at x = +25 cm. (a) Determine the x and y components of the electric field due to this arrangement of charges at the point (x, y) = (10, 10) (the units here are centimeters). Ex =   N/C Ey =   N/C (b) Determine the magnitude and...