Question

A 0.5kg block made of Al is on a frictionless incline that makes a 60◦ angle...

A 0.5kg block made of Al is on a frictionless incline that makes a 60◦ angle with the horizontal. The entire system is on an elevator. In each case, determine whether the block will be sliding down the ramp, sliding up the ramp, or stationary. If moving, calculate its acceleration.

1. the elevator is at rest

2. the elevator is moving upward at constant velocity 2m/s

3. the elevator is moving upward at 2m/s and slowing down with an acceleration of 1.75m/s2 .

4. the elevator is at rest and is flooded with glycerol.

5. the elevator is at rest and is on the moon.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the...
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the horizontal. The acceleration of gravity is 9.81 m/s2 . a) Find the work done by the gravitational force when the block slides 5.9 m (measured along the incline). b) What is the total work done on the block? c) What is the speed of the block after it has moved 5.9 m if it starts from rest? d) What is its speed after 5.9...
A small block travels up a frictionless incline that is at an angle of 30.0° above...
A small block travels up a frictionless incline that is at an angle of 30.0° above the horizontal. The block has speed 4.15 m/s at the bottom of the incline. Assume g = 9.80 m/s2. How far up the incline (measured parallel to the surface of the incline) does the block travel before it starts to slide back down?
A small block travels up a frictionless incline that is at an angle of 30.0° above...
A small block travels up a frictionless incline that is at an angle of 30.0° above the horizontal. The block has speed 1.20 m/s at the bottom of the incline. Assume g = 9.80 m/s2. How far up the incline (measured parallel to the surface of the incline) does the block travel before it starts to slide back down?
A 13.2kg block is on a ramp, with an incline of θ (a) If the ramp...
A 13.2kg block is on a ramp, with an incline of θ (a) If the ramp is frictionless what is the magnitude of the acceleration of the block down the ramp? (b) If the ramp has a coefficient of static friction of µs = 0.3, at what angle θ will the block start to move? Imagine like the friction lab, you slowly increase the incline of the ramp. (c) Does the angle found in b) depend on mass? (d) What...
A small block has constant acceleration as it slides down a frictionless incline. The block is...
A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 7.00 mm to the bottom of the incline is 3.80 m/s . What is the speed of the block when it is 3.00 mm from the top of the incline?
You do a physics lab experiment on another planet. A small block is released from rest...
You do a physics lab experiment on another planet. A small block is released from rest at the top of a long frictionless ramp that is inclined at an angle of 36.9° above the horizontal. You measure that a small block travels a distance 15.0 m down the incline in 7.90 s. What is the value of g, the acceleration due to gravity on this planet?
A block of mass, m=2.0kg, that can slide down a frictionless 53o incline is held at...
A block of mass, m=2.0kg, that can slide down a frictionless 53o incline is held at rest. The block is connected by a rope to a pulley of mass, Mp=4.0kg and radius, Rp=0.50m. The block is allowed to slide. Treat the pulley as a uniform disk. After the block slides 1.0m, a) show the linear acceleration of the block is 3.9m/s2. b) show the angular acceleration of the pulley is 7.8rads/s2. c) show the speed of the block is 2.8m/s....
A block with mass m=4.7 kg is on a frictionless incline surface (incline angle =44 degree)....
A block with mass m=4.7 kg is on a frictionless incline surface (incline angle =44 degree). An external force of F is applied parallel to inclined surface. If the block moves with a constant speed upward, find the magnitude of the applied force. Take g=9.81 m/s2and round your answer to 1 decimal place.
A.Your mass m=11 kg block slides down a frictionless ramp having angle theta=0.51 radians to the...
A.Your mass m=11 kg block slides down a frictionless ramp having angle theta=0.51 radians to the horizontal. After sliding down the ramp a distance L=16 m the block encounters a spring of spring constant k=551 N/m. The spring is parallel to the ramp. Use g=9.74 m/s/s for the acceleration of gravity. Calculate the maximum compression of the spring, in meters. Include labeled diagrams showing the initial and final configurations, and a discussion of the solution method based on energy conservation....
A block with mass m1 = 8.8 kg is on an incline with an angle θ...
A block with mass m1 = 8.8 kg is on an incline with an angle θ = 27° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1. When there is no friction, what is the magnitude of the acceleration of the block? 2. Now with friction, the acceleration is measured to be only a = 3.52 m/s2. What is the coefficient of kinetic friction between the incline and the...