Question

A spring-mass system is composed of a mass m = 200 g and a massless spring...

A spring-mass system is composed of a mass m = 200 g and a massless spring of force constant k obeying Hooke’s Law, and the whole system is located on a horizontal frictionless table. The mass m makes oscillations about the equilibrium position x = 0 according to the relation x(t) = (15 cm) sin 2πt. (You can take π = 3.)

What is the force constant k of the spring?

(a) 36/5 N/m   (b) 36 N/m   (c) 54 N/m   (d) 72/5 N/m   (e) 54/4 N/m

What is the total mechanical energy of the system?

(a) 9/50 J   (b) 81/1000 J   (c) 8/25 J   (d) 81/130 J   (e) 2/25 J

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.500-kg mass attached to an ideal massless spring with a spring constant of 12.5 N/m...
A 0.500-kg mass attached to an ideal massless spring with a spring constant of 12.5 N/m oscillates on a horizontal, frictionless surface. At time t = 0.00 s, the mass is located at x = –2.00 cm and is traveling in the positive x-direction with a speed of 8.00 cm/s. PART A: Find the angular frequency of the oscillations. Express your answer in rad/s. PART B: Determine the amplitude of the oscillations. Express your answer with the appropriate SI units....
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple...
A block with mass 2 kg is attached to an ideal massless spring and undergoes simple harmonic oscillations with a period of 0.50 s. The surface is frictionless. The amplitude of the oscillation is 0.1 m. (a) What is the spring constant of the spring? (b) What is the total mechanical energy of the system (the spring and block system)? (c) What is the maximum speed of the block? (d) What is the speed of the block when the displacement...
6) A mass of 3 kg is attached to a massless spring with a force constant...
6) A mass of 3 kg is attached to a massless spring with a force constant 500 N/m. The mass rests on a horizontal frictionless surface. The system is compressed a distance of 30 cm from the springs initial position and then released. The momentum of the mass when the spring passes its equilibrium position is? 8660.25m/s Is this right
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m....
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m. This object reaches a maximum position of 12 cm from equilibrium. a) Determine the angular frequency of this mass. Then, determine the b) force, c) acceleration, d) elastic potential energy, e) kinetic energy, and f) velocity that it experiences at its maximum position. Determine the g) force, h) acceleration, i) elastic potential energy, j) kinetic energy, and k) velocity that it experiences at the...
A massless spring of spring constant k = 4872 N/m is connected to a mass m...
A massless spring of spring constant k = 4872 N/m is connected to a mass m = 210 kg at rest on a horizontal, frictionless surface. Part (a) The mass is displaced from equilibrium by A = 0.73 m along the spring’s axis. How much potential energy, in joules, is stored in the spring as a result? Part (b) When the mass is released from rest at the displacement A= 0.73 m, how much time, in seconds, is required for...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is stretched 0.0566 m and released. It completes 12 oscillations in 4.62 s. Calculate: a) the oscillation frequency, b) the oscillation period, c) the spring force constant, d) the total mechanical energy of the oscillating spring, e) the maximum speed of the oscillating spring.
A mass-spring system composed of a 250g air-track glider attatched to a spring is being timed...
A mass-spring system composed of a 250g air-track glider attatched to a spring is being timed by a student as it oscillates with SHM. The student finds that 10 oscillations take 6.50s. What is the spring constant K? The 250g glider is now removed and another glider of mass m is attached to the spring. The new glider is pulled, released and the system oscillates according to x(t)=0.04cos(8.4t). a)What is the period of the new glider? b)By comparing the new...
A block of mass m is attached to a massless spring having a spring constant k...
A block of mass m is attached to a massless spring having a spring constant k and moves on a horizontal surface. It oscillates along the x-axis about its equilibrium position at x = 0. There is a frictional force of constant magnitude f between the block and the surface. Suppose the mass is pulled to the right to x = A and released at time t=0. (a) Find the position of the mass as it reaches the left turning...
An object with a mass m = 45.6 g is attached to a spring with a...
An object with a mass m = 45.6 g is attached to a spring with a force constant k = 12.3 N/m and released from rest when the spring is stretched 36.2 cm. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT