Question

The motion of an electron is given by x(t)=pt3+qt2+r, with p = -1.6 m/s3 , q...

The motion of an electron is given by x(t)=pt3+qt2+r, with p = -1.6 m/s3 , q = +1.3 m/s2 , and r = +9.0 m. Determine its velocity at t = 0. Determine its velocity at t = 1 s. Determine its velocity at t = 2 s. Determine its velocity at t = 3 s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron with a velocity given by v⃗ =(1.6×105 m/s )x^+(6700 m/s )y^ moves through a...
An electron with a velocity given by v⃗ =(1.6×105 m/s )x^+(6700 m/s )y^ moves through a region of space with a magnetic field B⃗ ==(0.26 T )x^−(0.10 T )z^ and an electric field E⃗ =(220 N/C )x^. Using cross products, find the magnitude of the net force acting on the electron. (Cross products are discussed in Appendix A.) Express your answer using two significant figures.
a) An electron has a velocity of 7.0 x 106 m/s in the positive x direction...
a) An electron has a velocity of 7.0 x 106 m/s in the positive x direction at a point where the magnetic field has the components Bx = 3.0 T, By = 2.5 T, and Bz = 2.0 T. What is the magnitude of the acceleration of the electron at this point (in 1018 m/s2)? (me = 9.11 x 10-31 kg, e = 1.6 x 10-19 C) b) A particle (q = 5.0 nC, m = 3.0 μg) moves in...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.
The acceleration of a bus is given by ax(t)=αt, where α = 1.30 m/s3 is a...
The acceleration of a bus is given by ax(t)=αt, where α = 1.30 m/s3 is a constant. a. If the bus's velocity at time t1 = 1.00 s is 4.99 m/s , what is its velocity at time t2 = 2.12 s ? b. If the bus's position at time t1 = 1.00 s is 6.03 m , what is its position at time t2 = 2.12 s ?
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with...
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with constant velocity enters a region containing a constant magnetic field that is directed along the z-axis at (x,y) = (0,0) as shown. The magnetic field extends for a distance D = 0.75 m in the x-direction. The proton leaves the field having a velocity vector (vx, vy) = (3.9 X 105 m/s, 1.9 X 105 m/s). 1)What is v, the magnitude of the velocity...
The displacement of an oscillating mass is given by x(t) = 20 cos( 4 t )....
The displacement of an oscillating mass is given by x(t) = 20 cos( 4 t ). A) What is the initial velocity of the mass at time t = 0 s? m/s Tries 0/2 B) What is the initial acceleration of the mass at time t = 0 s? m/s2 Tries 0/2 C) At time t = 0.5π s, what is the displacement of the mass? m Tries 0/2 D) At time t = 0.5π s, what is the velocity...
Let X be a random proportion. Given X=p, let T be the number of tosses till...
Let X be a random proportion. Given X=p, let T be the number of tosses till a p-coin lands heads. a) Let P(X=1/10)=1/4, P(X=1/7)=1/4, and P(X=1/3)=1/2. Find E(T). b) Find E(T) if X has the beta(r,s) density for some r>1. Simplify all integrals and Gamma functions in your answer. c) Let X have the beta(r,s) density. For fixed k>0, find the posterior density of X given T=k. Identify it as one of the famous ones and state its name and...
(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r...
(1) Determine whether the propositions p → (q ∨ ¬r) and (p ∧ ¬q) → ¬r are logically equivalent using either a truth table or laws of logic. (2) Let A, B and C be sets. If a is the proposition “x ∈ A”, b is the proposition “x ∈ B” and c is the proposition “x ∈ C”, write down a proposition involving a, b and c that is logically equivalentto“x∈A∪(B−C)”. (3) Consider the statement ∀x∃y¬P(x,y). Write down a...
The position of a particle for t > 0 is given by →r (t) = (3.0t...
The position of a particle for t > 0 is given by →r (t) = (3.0t 2 i ^ − 7.0t 3 j ^ − 5.0t −2 k ^ ) m. (a) What is the velocity as a function of time? (b) What is the acceleration as a function of time? (c) What is the particle’s velocity at t = 2.0 s? (d) What is its speed at t = 1.0 s and t = 3.0 s? (e) What is...
An electron (q=-1,6x10-19C, m=9,1x10-31kg) enters a uniform magnetic field, whih is in +x axis and it...
An electron (q=-1,6x10-19C, m=9,1x10-31kg) enters a uniform magnetic field, whih is in +x axis and it has magnitude of 2T. At t=0, the velocity components vx=3x105m/s, vy=4x105m/s and vz=0. a-At t=0 calculate the magnetic force acting on proton and its acceleration. b- Calculate the Radius of helical path c- Calculate the angular velocity d- Calculate the pitch of helix. (0=4x10-7 MKS) Help quickly I get you thumbs up directly
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT