Question

1. When using the scale to measure the mass of the cylinder in an Archimedes' Principle...

1. When using the scale to measure the mass of the cylinder in an Archimedes' Principle Lab experiment, does it experience a buoyant force due to its immersion in air? If so, approximate the magnitude of this buoyant force.

2. When using the scale to measure the submerged cylinder in an Archimedes' Principle Lab experiment, does it matter if the cylinder touches the bottom of the beaker in which it is submerged? How would such contact affect your measurement, if it all?

***THERE IS NO DIAGRAM MISSING HERE!

Homework Answers

Answer #1

1. Yes, the cylinder experiences buoyant force as it is immersed in air(fluid). The buoyant force on the cylinder is equal to the weight of the air displaced by the cylinder = (density of air) * (g) * (volume of the cylinder)

2. Yes it matters when the cylinder touches the bottom of the beaker. When the cylinder touches the beaker, normal force acts on the cylinder. It acts in up direction. The reading of the scale decreases as part of the weight of the cylinder is now supported by the normal force.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Archimedes' Principle Lab: We used a 250mL beaker and measured the mass of 3 objects. We...
Archimedes' Principle Lab: We used a 250mL beaker and measured the mass of 3 objects. We then tied a string around the objects and submerged them in water and recorded the masses. 1. Why do cylinders of similar size have similar Buoyant Forces? 2. What decides the magnitude of the Buoyant force? List the 3 answers 3. Design a second part where you find the density of an object less dense than water, e.g cork
1. In the space below, a. state Archimedes’ Principle b. define density c. Mathematically, derive an...
1. In the space below, a. state Archimedes’ Principle b. define density c. Mathematically, derive an equation based on this laboratory that uses Archimedes principle to measure the density of an object in terms of measurable quantities. Make sure the density of the object is NOT in terms of the unknown volume of the object in question. You can assume you know the density of water. d. Be sure to draw a free-body diagram of the mass attached to the...
Questions are after the procedures. Procedure 1) For Trial 1, use a graduated cylinder to measure...
Questions are after the procedures. Procedure 1) For Trial 1, use a graduated cylinder to measure 5 mL of 1 M sodium sulfate (Na2SO4). Place the sodium sulfate in a beaker. Using a clean graduated cylinder, add 5 mL of 1 M calcium chloride (CaCl2) to the beaker. Stir to mix well. 2) Using two Büchner funnels as in the diagram below, set up a funnel system with a safety flask to protect the water system from contaminants. 3) Filter...
Acid-Base Behavior In addition to following the general safety rules, chemicals need to be handled properly....
Acid-Base Behavior In addition to following the general safety rules, chemicals need to be handled properly. In particular, two very important classes of compounds called acids and bases require special attention. These compounds are commonly used reagents in the laboratory; therefore, understanding their proper disposal is beneficial. Physical differences between acids and bases can be detected by the some of the five senses, including taste and touch. Acids have a sour or tart taste and can produce a stinging sensation...
Experiment 1: Titrations With Hot Taco Sauce and Ketchup Materials: (2) 250 mL Beakers 100 mL...
Experiment 1: Titrations With Hot Taco Sauce and Ketchup Materials: (2) 250 mL Beakers 100 mL Beaker (waste beaker) 30 mL Syringe Syringe stopcock 100 mL Graduated cylinder Funnel Stir rod Ring stand Ring Clamp pH meter Scale 20 mL 0.1M NaOH 2 Ketchup packets 2 Hot sauce packets *90 mL Distilled water *Scissors *Computer Access *Access to a Graphing Software *Procedure for creating this solution provided in the "Before You Begin..." section (located at the beginning of the manual)....
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
Sign In INNOVATION Deep Change: How Operational Innovation Can Transform Your Company by Michael Hammer From...
Sign In INNOVATION Deep Change: How Operational Innovation Can Transform Your Company by Michael Hammer From the April 2004 Issue Save Share 8.95 In 1991, Progressive Insurance, an automobile insurer based in Mayfield Village, Ohio, had approximately $1.3 billion in sales. By 2002, that figure had grown to $9.5 billion. What fashionable strategies did Progressive employ to achieve sevenfold growth in just over a decade? Was it positioned in a high-growth industry? Hardly. Auto insurance is a mature, 100-year-old industry...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT