Question

A man pushes a 4.0 kg block against a horizontal spring, compressing the spring by 20...

A man pushes a 4.0 kg block against a horizontal spring, compressing the spring by 20 cm. Then the man releases the block, and the spring sends it sliding across a tabletop. It stops 90 cm from where you released it. The spring constant is 325 N/m. What is the block–table coefficient of kinetic friction?

A.

0.47      

B.

0.97

C.

0.57

D.

0.37

Homework Answers

Answer #1

Using energy conservation:

KEi + PEi + Wf = KEf + PEf

KEi = 0, since initial speed of block is zero

KEf = 0, since finally block stops after traveling 90 cm

PEi = Spring potential energy during compression = (1/2)*k*x^2

PEf = 0, since finally there is no compression in spring

Wf = Work-done by friction force = -Ff*d

Ff = Force of friction = *N = *m*g

So,

0 + (1/2)*k*x^2 - *m*g*d = 0 + 0

(1/2)*k*x^2 = *m*g*d

= Coefficient of kinetic friction = k*x^2/(2*m*g*d)

= 325*0.20^2/(2*4.0*9.81*0.90) = 0.184

Here none of the given options are correct (100% Sure about this). Please ask this issue with your TA or professor before giving negative rating.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You push a 3.2 kg block against a horizontal spring, compressing the spring by 16 cm....
You push a 3.2 kg block against a horizontal spring, compressing the spring by 16 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 62 cm from where you released it. The spring constant is 170 N/m. What is the coefficient of kinetic friction between the block and the table?
You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm....
You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 84 cm from where you released it. The spring constant is 280 N/m. What is the coefficient of kinetic friction between the block and the table?
A 2.00 kg block sliding on a horizontal surface makes contact with a spring, compressing the...
A 2.00 kg block sliding on a horizontal surface makes contact with a spring, compressing the spring (the other end of the spring is attached to a rigid wall). At the instant of contact, the block has a speed of 12.0 m/s. The coefficients of static and kinetic friction between the block and the surface are 0.55 and 0.35, respectively. The spring constant of the spring is 100.0 N/m. a) Determine the maximum compression of the spring b) Determine the...
Another block, another spring. This time around, the block (m = 1.18 kg) is compressing a...
Another block, another spring. This time around, the block (m = 1.18 kg) is compressing a spring with spring constant k = 273 N/m by 36.3 cm. It is released from rest so it then slides along the horizontal surface shown. This time, there is friction on the horizontal surface, with a coefficient of friction between the block and surface of μk = 0.11. In addition, there is a steady wind blowing to the right, exerting a constant 6.7 N...
. A 50 g plastic cube is pressed against a spring, compressing the spring by 10...
. A 50 g plastic cube is pressed against a spring, compressing the spring by 10 cm. The spring constant is 25 N/m. The cube is 22 cm from the bottom of a 30° slope. Once the cube is released, to what height does the cube slide? The coefficient of kinetic friction on the flat surface is .20. There is no friction up the ramp.
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring...
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring whose spring constant is 320 N/m. Unstretched, the spring is 20.0 cm long. The block causes the spring to compress to a length of 12.5 cm as the block temporarily comes to rest. The coefficient of kinetic friction between the block and the horizontal surface is 0.25. a) How much work is done by the spring as it brings the block to rest? b)...
A 193 g block is pressed against a spring of force constant 1.12 kN/m until the...
A 193 g block is pressed against a spring of force constant 1.12 kN/m until the block compresses the spring 14.8 cm. The spring rests at the bottom of a ramp inclined at 64.3o to the horizontal. A) Determine how far up the incline the block moves before it stops if there is no friction between the block and the ramp. B) How far up the incline does the block move before it stops if the coefficient of kinetic friction...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.8 kN/m. The block is pulled to the right so that the spring is stretched 7.2 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 1.6 cm from...
A 225-g block is pressed against a spring of force constant 1.26 kN/m until the block...
A 225-g block is pressed against a spring of force constant 1.26 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block m (b) if the coefficient of kinetic friction is 0.369...
A 195-g block is pressed against a spring of force constant 1.30 kN/m until the block...
A 195-g block is pressed against a spring of force constant 1.30 kN/m until the block compresses the spring 10.0 cm. The spring rests at the bottom of a ramp inclined at 60.0° to the horizontal. Using energy considerations, determine how far up the incline the block moves from its initial position before it stops under the following conditions. (a) if the ramp exerts no friction force on the block m (b) if the coefficient of kinetic friction is 0.366...