Question

As you know, a common example of a harmonic oscillator is a mass attached to a...

As you know, a common example of a harmonic oscillator is a mass attached to a spring. In this problem, we will consider a horizontally moving block attached to a spring. Note that, since the gravitational potential energy is not changing in this case, it can be excluded from the calculations.

For such a system, the potential energy is stored in the spring and is given by

U=12kx2,

where k is the force constant of the spring and x is the distance from the equilibrium position.

The kinetic energy of the system is, as always,

K=12mv2,

where m is the mass of the block and v is the speed of the block.

We will also assume that there are no resistive forces; that is, E=constant.

A) Find the total energy of the object at any point in its motion.

B) Find the amplitude of the motion.

C) Find the maximum speed attained by the object during its motion.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object with mass 2.8 kg is executing simple harmonic motion, attached to a spring with...
An object with mass 2.8 kg is executing simple harmonic motion, attached to a spring with spring constant 320 N/m . When the object is 0.021 m from its equilibrium position, it is moving with a speed of 0.65 m/s . Calculate the amplitude of the motion. Calculate the maximum speed attained by the object.
A simple harmonic oscillator consists of a 675-g block attached to a lightweight spring. The total...
A simple harmonic oscillator consists of a 675-g block attached to a lightweight spring. The total energy of the system is 9.40 J, and its period of oscillation is 0.340 s. (a) What is the maximum speed of the block? Did you accidentally divide or take the inverse in your calculation? m/s (b) What is the force constant of the spring? N/m (c) What is the amplitude of the motion of the block? m
An object with mass 3.8 kg is executing simple harmonic motion, attached to a spring with...
An object with mass 3.8 kg is executing simple harmonic motion, attached to a spring with spring constant 260 N/mN/m . When the object is 0.017 mm from its equilibrium position, it is moving with a speed of 0.65 m/s . Calculate the amplitude of the motion. Calculate the maximum speed attained by the object.
In Classical Physics, the typical simple harmonic oscillator is a mass attached to a spring. The...
In Classical Physics, the typical simple harmonic oscillator is a mass attached to a spring. The natural frequency of vibration (radians per second) for a simple harmonic oscillator is given by ω=√k/m and it can vibrate with ANY possible energy whatsoever. Consider a mass of 135 grams attached to a spring with a spring constant of k = 1 N/m. What is the Natural Frequency (in rad/s) of vibration for this oscillator? In Quantum Mechanics, the energy levels of a...
An object with mass 2.3 kg is executing simple harmonic motion, attached to a spring with...
An object with mass 2.3 kg is executing simple harmonic motion, attached to a spring with spring constant 330 N/m . When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.50 m/s . Part A Calculate the amplitude of the motion. Part B Calculate the maximum speed attained by the object.
An object with mass 3.6 kg is executing simple harmonic motion, attached to a spring with...
An object with mass 3.6 kg is executing simple harmonic motion, attached to a spring with spring constant 320 N/m . When the object is 0.025 m from its equilibrium position, it is moving with a speed of 0.40 m/s. Part A: Calculate the amplitude of the motion. Part B: Calculate the maximum speed attained by the object.
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. ____m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] ____m/s
A mass of 187 g is attached to a spring and set into simple harmonic motion...
A mass of 187 g is attached to a spring and set into simple harmonic motion with a period of 0.286 s. If the total energy of the oscillating system is 6.94 J, determine the following. (a) maximum speed of the object m/s (b) force constant N/m (c) amplitude of the motion m
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...
Problem 1 A simple harmonic oscillator consists of a block (m = 0.50 kg) attached to...
Problem 1 A simple harmonic oscillator consists of a block (m = 0.50 kg) attached to a spring (k = 128 N/m). The block is pulled a certain distance from the equilibrium position and released at t = 0 s. The block slides on a horizontal frictionless surface about the equilibrium point x = 0 m with a total mechanical energy of 16 J. a) What are the amplitude and phase constant of the oscillation? (4 pts.) b) Find the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT