Question

Build a microscope that can double the size of an object. We need to choose two...

Build a microscope that can double the size of an object. We need to choose two converging lenses from these available lenses with focal lengths 2,4,8, and 12 meters.

First choose an objective lens focal length, and a distance to place the object from the lens.

Then choose an eyepiece lens focal length and a distance to place the lens from the objective lens.

Draw your microscope design including a ray diagram.

Your diagram should include:

1. Location and properties (real/virtual, upright/inverted, bigger/smaller) of the image formed by the objective.

2. Location and properties (real/virtual, upright/inverted, bigger/smaller) of the image formed by the eyepiece.

Finally, Calculate the magnification of your microscope.

Help Thanks!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the lens separation and object location for a microscope made from an objective lens of...
Determine the lens separation and object location for a microscope made from an objective lens of focal length +1.1-cm and an eyepiece of focal length +4.0-cm. Arrange the lenses so that a final virtual image is formed 100 cm to the left of the eyepiece and so that the angular magnification is -260 for a person with a near point of 25. B:Determine the distance between the objective lens and the eyepiece. Express your answer with the appropriate units. Answer...
Choose the correct statement regarding a compound microscope being used to look at a mite. The...
Choose the correct statement regarding a compound microscope being used to look at a mite. The eyepiece lens forms a real image of the mite. The converging objective lens forms a virtual image of the mite. The eyepiece lens forms a virtual image of the mite. If the focal distance of the objective lens is shortened, then its magnification decreases. The mite should be located at the focal point of the objective lens.
The focal length of the objective lens in a microscope is 0.270 cm, and an object...
The focal length of the objective lens in a microscope is 0.270 cm, and an object is placed 0.275 cm from the objective. a. How far from the objective lens will the objective image be formed? b. If the image of this object is viewed with the eyepiece adjusted for minimum eyestrain (image at the far point of the eye) for a person with normal vision. What is the needed focal length of the eyepiece lens if the distance between...
Please explain, walkthrough, and show equations. The focal length of the objective lens in a microscope...
Please explain, walkthrough, and show equations. The focal length of the objective lens in a microscope is 0.270 cm, and an object is placed 0.275 cm from the objective. a. How far from the objective lens will the objective image be formed? b. If the image of this object is viewed with the eyepiece adjusted for minimum eyestrain (image at the far point of the eye) for a person with normal vision. What is the needed focal length of the...
A real, upright object of 3.50 cm in height is placed to the left of a...
A real, upright object of 3.50 cm in height is placed to the left of a converging lens with focal length 12.0 cm. A diverging lens with focal length 6.00 cm is located 20.0 cm to the right of the converging lens. Read carefully: The final image formed by the two lens system is 5.00 cm to the right of the converging lens. Draw a simple yet clear diagram of the setup, labeling lenses, object distances, and images distances as...
An object is placed 5cm in front of a diverging lens of focal length 25 cm....
An object is placed 5cm in front of a diverging lens of focal length 25 cm. A second converging lens of focal length 15cm is positioned 20 cm to the right of the first lens. What is the final image distance? What is the magnification of the final image? Is it upright of inverted? Real or virtual?
The focal length of the eyepiece of a certain microscope is 18.0 mm. The focal length...
The focal length of the eyepiece of a certain microscope is 18.0 mm. The focal length of the objective is 9.00 mm. The distance between the objective and eyepiece is 19.7 cm. The final image formed by the eyepiece is at infinity. Treat all lenses as thin. (a) What is the distance from the objective to the object being viewed? cm (b) What is the magnitude of the linear magnification produced by the objective? ✕ (c) What is the overall...
The focal length of the eyepiece of a certain microscope is 20.0 mm. The focal length...
The focal length of the eyepiece of a certain microscope is 20.0 mm. The focal length of the objective is 5.00 mm. The distance between the objective and eyepiece is 19.7 cm. The final image formed by the eyepiece is at infinity. Treat all lenses as thin. (a) What is the distance from the objective to the object being viewed? ________cm (b) What is the magnitude of the linear magnification produced by the objective? _________? (c) What is the overall...
An object of height 6.00 cm is placed 24.0 cm to the left of a converging...
An object of height 6.00 cm is placed 24.0 cm to the left of a converging lens with a focal length of 10.5 cm. Determine the image location in cm, the magnification, and the image height in cm. (a) the image location in cm (b) the magnification (c) the image height in cm (d) Is the image real or virtual? (e) Is the image upright or inverted?
Principal Ray Diagrams and Equations 1.) An object is 6 cm in front of a convex...
Principal Ray Diagrams and Equations 1.) An object is 6 cm in front of a convex mirror with a focal length of 10 cm. a.) Use ray tracing alone to determine the location and magnification of the image. Is the image upright or inverted? Is it real or virtual? b.) Use equations alone to determine the location and magnification of the image. Is the image upright or inverted? Is it real or virtual? 2.) A 2.0-cm-tall object is 20 cm...