Question

a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6...

a) A particle with a charge of -4.0 μC and a mass of 4.9 x 10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 83 m/s. The only force acting on the particle is the electric force. What is the potential difference VB - VA between A and B? If VB is greater than VA, then give the answer as a positive number. If VB is less than VA, then give the answer as a negative number.

b) A particle has a charge of +2.6 μC and moves from point A to point B, a distance of 0.10 m. The particle experiences a constant electric force, and its motion is along the line of action of the force. The difference between the particle's electric potential energy at A and B is EPEA - EPEB = +7.5 x 10-4 J. (a) Find the magnitude of the electric force that acts on the particle. (b) Find the magnitude of the electric field that the particle experiences.

Thank you!

Homework Answers

Answer #1

a)

Ans:

Solution:

Given,

mass of the particle

charge of the particle

The particle is at rest at point A. It has a velocity of on reaching point B. The work done by the electric field is stored as the kinetic energy of the particle.

Thus, workdone by the field is

The workdone by the particle is negative because particle is pulled by the field. So,

  

The Potential difference between A and B () is given by,

  

  

The point B is at higher potential than point A.

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle with a charge of −1.6 μC and a mass of 3.5  10-6 kg is released...
A particle with a charge of −1.6 μC and a mass of 3.5  10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 35 m/s. The only force acting on the particle is the electric force. (a) Which point is at the higher potential? point A point B ? Give your reasoning. Negative charge accelerates from a higher potential to a lower potential.Negative charge accelerates from a lower potential to a...
a) A particle (charge = 70 μC) moves in a region where the only force on...
a) A particle (charge = 70 μC) moves in a region where the only force on it is an electric force. As the particle moves 25 cm from point A to point B, its kinetic energy increases by 4.2 mJ. Determine the electric potential difference, VB - VA. (in Volts) b) Points A [at (3, 1) m] and B [at (8, 8) m] are in a region where the electric field is uniform and given by E→=(4iˆ+3jˆ)E→=4i^+3j^A- VB? (in Volts)
a) A particle of charge 3 μC is located at the origin. A second particle of...
a) A particle of charge 3 μC is located at the origin. A second particle of charge 4 μC is located at the coordinates (1.12,1.66) in cm. What is the magnitude of the electric force between the particles? b) What are the X and Y components of the electric force acting on the particle at the point (1.12,1.66)?
A point particle with charge q = 4.9 μC is placed on the x axis at...
A point particle with charge q = 4.9 μC is placed on the x axis at x = −10 cm and a second particle of charge Q = 7.8 μC is placed on the x axis at x = +25 cm. (a) Determine the x and y components of the electric field due to this arrangement of charges at the point (x, y) = (10, 10) (the units here are centimeters). Ex_____ Ey_____ (b) Determine the magnitude and direction of...
A particle with charge 1.60×10−19 C is placed on the x axis in a region where...
A particle with charge 1.60×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.44×10−18 J . In what direction and through what potential difference Vb−Va...
question: A particle with charge 8.00×10−19 C is placed on the x axis in a region...
question: A particle with charge 8.00×10−19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. part A: The particle, initially at rest, is acted upon only by the electric force and moves from point a to point balong the x axis, increasing its kinetic energy by 1.60×10−18 J . In what direction and through what potential...
5) a. A particle of charge 3 μC is located at the origin. A second particle...
5) a. A particle of charge 3 μC is located at the origin. A second particle of charge 3 μC is located at the coordinates (3.89,3.15) in cm. What is the magnitude of the electric force between the particles? b. What are the x and y components of the electric force acting on the particle at the point (3.89,3.15)? [Enter the x component in the first box and the y component in the second box.] Answer 1 of 2: Answer...
A particle with charge 3.20×10?19 C is placed on the x axis in a region where...
A particle with charge 3.20×10?19 C is placed on the x axis in a region where the electric potential due to other charges increases in the +x direction but does not change in the y or z direction. The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, increasing its kinetic energy by 1.12×10?18 J . In what direction and through what potential difference Vb?Va...
1. A battery holds the potential difference between two very large parallel plates fixed at 10...
1. A battery holds the potential difference between two very large parallel plates fixed at 10 Volts. If I slightly increase the separation between the plates, then the electric field between the plates _______. A) decreases B) increases C) stays the same D) not enough information 2. A particle has a charge of +1.28mC (microC) and moves from point A to point B, a distance of 0.191m. The particle experiences a constant electric force, and its motion is along the...
A point charge of +10 μC is at (+3 m, 0 m) on the x-axis and...
A point charge of +10 μC is at (+3 m, 0 m) on the x-axis and a point charge of +10 μC is at (-3 m,0 m). a. Determine the work required to assemble this charge distribution. W = ________ J b. Find the magnitude of the electric field at a point (0,+3 m) on the y-axis. E = __________ x103 N/C A charge q = +1 μC is placed at this point. Find the magnitude of the force on...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT