Question

In a constant-volume process, 208 J of energy is transferred by heat to 1.08 mol of...

In a constant-volume process, 208 J of energy is transferred by heat to 1.08 mol of an ideal monatomic gas initially at 294 K.

(a) Find the work done on the gas.
J

(b) Find the increase in internal energy of the gas.
J

(c) Find its final temperature.
K

Homework Answers

Answer #1

Given data

Energy transferred

No of mol

Initial temperature

(a)

Workdone on the gas is 208 J

(b)

Increase in internal energy 208 J

(c)

Let the change in temperature

We know

For monoatomic ideal gas

Universal gas constant

Hence the final temperature will be

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a constant-volume process, 215 J of energy is transferred by heat to 1.07 mol of...
In a constant-volume process, 215 J of energy is transferred by heat to 1.07 mol of an ideal monatomic gas initially at 292 K. (a) Find the work done on the gas. 0 J (b) Find the increase in internal energy of the gas. 215 J (c) Find its final temperature. ? K
Suppose 1300 J of heat are added to 4.3 mol of argon gas at a constant...
Suppose 1300 J of heat are added to 4.3 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas.
Suppose 1400 J of heat are added to 1.8 mol of argon gas at a constant...
Suppose 1400 J of heat are added to 1.8 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas. m3
1. Under constant-volume conditions, 4200 J of heat is added to 1.4 moles of an ideal...
1. Under constant-volume conditions, 4200 J of heat is added to 1.4 moles of an ideal gas. As a result, the temperature of the gas increases by 103 K. How much heat would be required to cause the same temperature change under constant-pressure conditions? Do not assume anything about whether the gas is monatomic, diatomic, etc. 2. A system gains 3080 J of heat at a constant pressure of 1.36 × 105 Pa, and its internal energy increases by 4160...
Under constant pressure, the temperature of 1.70 mol of an ideal monatomic gas is raised 15.5...
Under constant pressure, the temperature of 1.70 mol of an ideal monatomic gas is raised 15.5 K. (a) What is the work W done by the gas? J (b) What is the energy transferred as heat Q? J (c) What is the change ΔEint in the internal energy of the gas? J (d) What is the change ΔK in the average kinetic energy per atom? J
Suppose 1300J of heat are added to 1.5 mol of argon gas at a constant pressure...
Suppose 1300J of heat are added to 1.5 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas. m3
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and...
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and 1 atm. (a) What is its initial internal energy? _____ kJ (b) Find its final internal energy and the work done by the gas when 420 J of heat are added at constant pressure. final internal energy ________kJ work done by the gas _______kJ (c) Find the same quantities when 420 J of heat are added at constant volume. finale internal energy ________kJ work...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
The heat capacity at constant volume of a certain amount of a monatomic gas is 53.7...
The heat capacity at constant volume of a certain amount of a monatomic gas is 53.7 J/K. (a) Find the number of moles of the gas. in mol (b) What is the internal energy of the gas at T = 286 K? in kJ (c) What is the heat capacity of the gas at constant pressure? in J/k
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4×105Pa on the gas. The gas is cooled until its temperature has decreased to 27∘C. For the gas CV = 11.65 J/mol⋅K, and the ideal gas constant R = 8.314 J/mol⋅K. 1.Find the work done by the gas during this process. 2.What is the change in the internal (thermal) energy of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT