Question

1.) A block of mass 0.40 kg is attached to the wire connected to the wall...

1.) A block of mass 0.40 kg is attached to the wire connected to the wall making an angle of 90 degrees with it. It is also attached to the ceiling with the wire making an angle of 53 degrees with the horizontal. Calculate tensions at each wire. (s the tension in the wire hinged to the ??wall and is the tension in the wire attached to the ceiling).

2.) A 5.0 kg wood block is on ice being pulled by two equal forces of 20 Newtons applied at the same point. The angle between the forces is 120 degrees. Find the acceleration of the block, neglect friction.

3.) A 60 kg person is in an elevator:a) Calculate the apparent weight of the person when an elevator is going down with acceleration of 3.0 m/s2.b) What is an apparent weight of the person when an elevator is going up with an acceleration of 3.0 m/s2.

4.) Two masses m1= 0.30 kg and m2 = 0.40 kg are connected by a light string that passes over the frictionless and massless pulley. a) What is the total mass that accelerates?b) Find the net force on the system that causes the acceleration?c) Using Newton’s second law find the acceleration of each block?

5.) Using Newton’s Laws of Motion for the system shown to the right, the coefficient of friction between m1 and the surface is 0.20, m1 = 1.5 kg, m2 = 5.0kg, and θ = 40 °. a) Clearly indicate all the forces acting on each mass. b) Determine the acceleration of each mass, and c) The tension in the cord.

6.) A block of weight 500.0 N is suspended by two cables as shown below. Determine the tensions in the strings in the block is in equilibrium. (Given: θ1 = 25.0 and θ2 = 35.0)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7) A block of mass m1 = 38 kg on a horizontal surface is connected to...
7) A block of mass m1 = 38 kg on a horizontal surface is connected to a mass m2 = 21.6 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.24. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? Answer:    m/s2 (b) Determine the...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0 ? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.400 m/s2 is observed for block 2. Part A Find the mass of block 2, m2. Express your answer numerically in kilograms.
Two blocks are attached by a massless wire block A has a mass of 0.75kg and...
Two blocks are attached by a massless wire block A has a mass of 0.75kg and block B has a mass of 1kg. The blocks have coefficients of static friction µkA =0.5 and µkB=0. The blocks slide down the slope which is at an angle θ =25º to the horizontal. a) Draw a free body diagram of each block indicating the coordinate system and labelling all of the forces on the blocks b) Write down two Newton’s second law equations...
A block with mass m1 hangs from a rope that is extended over an ideal pulley...
A block with mass m1 hangs from a rope that is extended over an ideal pulley and attached to a second block with mass m2 that sits on a ledge. The second block is also connected to a third block with mass m3 by a second rope that hangs over a second ideal pulley as shown in the figure below. If the friction between the ledge and the second block is negligible, m1 = 2.60 kg, m2 = 4.00 kg,...
ball of mass m1 =5.9 kg and a block of mass m2 =3.3 kg are connected...
ball of mass m1 =5.9 kg and a block of mass m2 =3.3 kg are connected with a lightweight string over a pulley with moment of inertia I and radius R=0.25m. The coefficient of kinetic friction between the table top and the block of mass m2 is μk = 0.5. If the magnitude of the acceleration is a=2.9m/s2. a)What are the tensions T1 and T2 in the string. T1= N T2= N b)Calculate the moment of inertia of the pulley....
A boy with a mass of 30.0 kg is sliding down a snow covered hillside at...
A boy with a mass of 30.0 kg is sliding down a snow covered hillside at an angle of 25.00 degrees to the horizontal. Find the boy's acceleration if the coefficient of kinetic friction is 0.17. A box with a mass 26.50 kg if being pulled by three forces : F1 46.25 N , F2 10.00 N [164.50]o and F3 9.06 N [229.85]o. Determine the acceleration of the box. (Note direction is not required, quote your answer to 2 decimal...
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string....
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string. When a horizontal force F = 105 N is applied to m1 as shown in the figure below, the acceleration of the system is 3.20 m/s2 towards the left and the tension in the string connecting the two blocks is 62.0 N. The blocks are moving on a rough surface with an unknown coefficient of kinetic friction. Determine the coefficient of kinetic friction between...
A block of mass 2 kg that sits on a horizontal table is connected to a...
A block of mass 2 kg that sits on a horizontal table is connected to a block of mass 6 kg that sits on a ramp of angle 34 ⁰down from the horizontal by a massless string that runs over a pulley in the shape of a solid disk having radius 0.93 m and mass 10 kg. The coefficient of friction for both blocks is 0.256. (a) What is the acceleration of the blocks? (b) The tension in the string...
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle...
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle θ = 50° is connected by a cord over a massless, frictionless pulley to a second block of mass M1 = 5.36 kg on a horizontal surface. The coefficient of kinetic friction between M1, M2 and the surface is μk = 0.150, the Force F1 = 11.3 N is acting downward on M1, and the Force F2 = 21.8 N is acting on M2...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 7.60 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. Two objects, blocks labeled m1 and m2, are connected to a cord which is hung...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT