Question

32.553 g of lead at 190.677 oC is put into 96.671 g of water at 0.610...

32.553 g of lead at 190.677 oC is put into 96.671 g of water at 0.610 oC. What is the final temperature in Celsius of the mixture?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.76 g lead weight, initially at 10.7 ∘C, is submerged in 8.17 g of water...
A 2.76 g lead weight, initially at 10.7 ∘C, is submerged in 8.17 g of water at 52.6 ∘C in an insulated container. What is the final temperature of both the weight and the water at thermal equilibrium? Express the temperature in Celsius to three significant figures.
If 20 g of steam at 100 oC is mixed into 80 g of water at...
If 20 g of steam at 100 oC is mixed into 80 g of water at 20 oC, what will be the final temperature if no thermal energy is lost and no steam escapes?
A 2.28 g lead weight, initially at 11.1 ∘C, is submerged in 8.15 gof water at...
A 2.28 g lead weight, initially at 11.1 ∘C, is submerged in 8.15 gof water at 52.8 ∘C in an insulated container. What is the final temperature (degrees Celsius) of both the weight and the water at thermal equilibrium?
15.48 g of nickel sulfate (MM 154.75 g/mol) was dissolved in 100.00 mL of water. The...
15.48 g of nickel sulfate (MM 154.75 g/mol) was dissolved in 100.00 mL of water. The initial temperature was 20.00 oC, and the final temperature was 25.06 oC, The specific heat capacity of the reaction mixture was 4.18J g- oC-. What is the heat transferred, Q? A. 2442 J B. 2115 J C. 327 J D. 418 J I got 327 J, but it gets marked as wrong. Why? 15.48 g of nickel sulfate (MM 154.75 g/mol) was dissolved in...
A metal sample weighing 72.1 g is placed in a hot water bath at 95.0 oC....
A metal sample weighing 72.1 g is placed in a hot water bath at 95.0 oC. The calorimeter contains 42.3 g of deoinized water. The initial temperature of the water is 22.3 oC. The metal is transferred to the calorimeter and the final temperature reached by the water + metal is 32.2 oC. A. Calculate ∆T for the water (Tfinal – Tinitial). B. Calculate ∆T for the metal. C. The specific heat of water is 4.18 J/goC. Calculate the specific...
1. A 50-g sample of iron at 100oC is put into 75 g of water at...
1. A 50-g sample of iron at 100oC is put into 75 g of water at 0oC. What is the final temperature of the mixture? (The specific heat of iron is 0.11 cal/g Co.) 2. A machine part consists of 0.10 kg of iron and 0.16 kg of copper. How much heat is added to the gear if the temperature increases by 35oC? [Hint: Compute the heat required for each metal and add the numbers. State your answer in joules.]...
A 2.29 g lead weight, initially at 10.6 ∘C, is submerged in 8.24 g of water...
A 2.29 g lead weight, initially at 10.6 ∘C, is submerged in 8.24 g of water at 52.6 ∘C in an insulated container. What is the final temperature of both the weight and the water at thermal equilibrium?
A 2.60 g lead weight, initially at 10.7 ∘C, is submerged in 8.18 g of water...
A 2.60 g lead weight, initially at 10.7 ∘C, is submerged in 8.18 g of water at 52.0 ∘C in an insulated container What is the final temperature of both the weight and the water at thermal equilibrium?
A student heats up a 2.5-g gold block (cs = 0.13 J/g-K) from 13.5 oC to...
A student heats up a 2.5-g gold block (cs = 0.13 J/g-K) from 13.5 oC to 22.8 oC. a. What is the heat capacity of this gold block? b. What is the molar heat capacity of gold? c. How many joules are required to heat this gold block from 13.5 oC to 22.8 oC? d. If this gold block is submerged into 50 mL of water (cs = 4.18 J/g°-K) at 50 oC after it reaches 22.8 oC, indicate the...
An insolated cup contains 1kg of water initially at 20 oC. 0.50 kg of ice, initially...
An insolated cup contains 1kg of water initially at 20 oC. 0.50 kg of ice, initially at 0 oC is added to the cup of water. The water and ice are allowed to come to thermal equilibrium. The specific heat of ice is 2000 J/kg oC, the specific heat of water 4186 J/kg oC, the latent heat of fusion of water is 33.5x104 J/kg. What is the final temperature of the water? (A) 0 oC I know the answer is...