Question

The wave function of a particle in a one-dimensional box of length L is ψ(x) =...

The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L).

Find the probability function for ψ.

Find P(0.1L < x < 0.3L)

Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The wave function for a particle confined to a one-dimensional box located between x = 0...
The wave function for a particle confined to a one-dimensional box located between x = 0 and x = L is given by Psi(x) = A sin (n(pi)x/L) + B cos (n(pi)x/L) . The constants A and B are determined to be
The state of a particle is completely described by its wave function Ψ(?,?) One-dimensional Schrodinger Equation--...
The state of a particle is completely described by its wave function Ψ(?,?) One-dimensional Schrodinger Equation-- answer the following questions: 2) Show that when U(x) = 0, and , is a solution to the one-?=2??/ℏΨ=?sin??dimensional Schrodinger equation. 3) Show that when U(x) = 0, and , is a solution to the one-?=2??/ℏΨ=?cos??dimensional Schrodinger equation. 4) Show that where A and B are constants is a solution to the Ψ=??+?Schrodinger equation when U(x) = 0, and when E = 0.
Recall that |ψ|2dx is the probability of finding the particle that has normalized wave function ψ(x)...
Recall that |ψ|2dx is the probability of finding the particle that has normalized wave function ψ(x) in the interval x to x+dx. Consider a particle in a box with rigid walls at x=0 and x=L. Let the particle be in the first excited level and use ψn(x)=2L−−√sinnπxL For which values of x, if any, in the range from 0 to L is the probability of finding the particle zero? For which v alues of x is the probability highest?Express your...
The sides of a one dimensional quantum box (1-D) are in x=0, x=L. The probability of...
The sides of a one dimensional quantum box (1-D) are in x=0, x=L. The probability of observing a particle of mass m in the ground state, in the first excited state and in the 2nd excited state are 0.6, 0.3, and 0.1 respectively a) If each term contributing to the particle function has a phase factor equal 1 in t=0. What is the wave function for t>0? b) what is the probability of finding the particle at the position x=L/3...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x ≤ ∞. a) Draw this wavefunction, labeling the axes in terms of A and L. b) Find the relationship between A and L that satisfies the normalization condition. c) Calculate the approximate probability of finding the particle between positions x = −L and x = L. d) What are 〈x〉, 〈x^2〉, and σ_x ? (Hint: use shortcuts where possible). e) Find the minimum uncertainty...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle of mass m moves in a one-dimensional box of length L, with boundaries at...
A particle of mass m moves in a one-dimensional box of length L, with boundaries at x = 0 nm and x = 5 nm. Thus, V (x) = 0 for 0 ≤ x ≤ 5 nm, and V (x) = ∞ elsewhere. a) Can light excite a particle from its ground state to the fourth excited state? Mathematically support your answer. b) If the optical transition in (a) is possible, what is the required wavelength of light that generates...
A particular positron is restricted to one dimension and has a wave function given by ψ(x)=...
A particular positron is restricted to one dimension and has a wave function given by ψ(x)= Ax between x = 0 and x = 1.00 nm, and ψ(x) = 0 elsewhere. Assume the normalization constant A is a positive, real constant. (a) What is the value of A (in nm−3/2)? nm−3/2 (b) What is the probability that the particle will be found between x = 0.290 nm and x = 0.415 nm? P = (c) What is the expectation value...
a. Suppose that at time ta the state function of a one particle system is Ψ...
a. Suppose that at time ta the state function of a one particle system is Ψ = (2/πc2)3/4 e(exp [– (x2 + y2 + z2)/c2)] where c = 2 nm. Find the probability that a measurement of the particle’s position at ta will find the particle in the tiny cubic region with its center at x = 1.2 nm, y = -1.0 nm, z = 0 and with edges each of length 0.004 nm. Note that 1 nm = 10-9...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT