Question

Consider an LR series circuit with time constant 0.001050 s and resistance 43 omhs. What is...

Consider an LR series circuit with time constant 0.001050 s and resistance 43 omhs. What is the inductance in mH? Report your answer to 1 decimal.

Homework Answers

Answer #1

Inductance

Resistance,

Time constant,

For an LR series circuit, time constant,

                            

                         

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In an LRC series circuit, the inductance is 244 mH, the resistance is 29 Ω, and...
In an LRC series circuit, the inductance is 244 mH, the resistance is 29 Ω, and the capacitance is 354 μF. If the AC voltage applied across the circuit is given by V(t) = (12 V)sin(11πt) calculate the voltage across each element at a time of t = 0.04 s. VR = V VC = V VL = V
It takes 2.25 ms for the current in an LR circuit to increase from zero to...
It takes 2.25 ms for the current in an LR circuit to increase from zero to 0.66 its maximum value. Part A Determine the time constant of the circuit. Express your answer to two significant figures and include the appropriate units. Part B Determine the resistance of the circuit if 35.0 mH . Express your answer to two significant figures and include the appropriate units.
Consider a series circuit with a resistor with resistance R, an inductor with inductance L and...
Consider a series circuit with a resistor with resistance R, an inductor with inductance L and an ac generator with angular frequency, ω and peak voltage V0. Using Kirchoff’s laws, write and solve the differential equation for the current, I.
In an L-R-C series circuit, the resistance is 600 ?, the inductance is 440 mH and...
In an L-R-C series circuit, the resistance is 600 ?, the inductance is 440 mH and the capacitance is 4.00 ?F. At resonance, the rms current through the circuit is 0.120 A. (A) Find the resonance frequency f0 of the circuit. [4] (B) Find the rms voltage of the source. [4] (C) Find the rms voltage across the capacitor at resonance. [6] (D) Find the rms voltage across the inductor at resonance.
Consider an LR circuit like that displayed in Figure 6.6 in Activity 2-1 in your lab...
Consider an LR circuit like that displayed in Figure 6.6 in Activity 2-1 in your lab manual. You measure the current through the inductor as a function of time, and find that the the current eventually levels off to be 55.05 mA. The voltage of the battery is 6V as displayed. a) What is the total resistance of the circuit? b) If the circuit takes 7.52 ms to reach 34.80 mA, what is the value of L for the inductor?
1. For a particular RLC series circuit, the capacitive reactance is 4.65 Ω, the inductive reactance...
1. For a particular RLC series circuit, the capacitive reactance is 4.65 Ω, the inductive reactance is 23.5 Ω, and the maximum voltage across the 84.9 Ω resistor is 34.9 V. What is the maximum voltage across the circuit? please answer both exercise not only one this is 2 essential questions 2. Consider a series RLC circuit where the resistance ?=447 Ω , the capacitance ?=3.25 μF , and the inductance ?=85.0 mH . What is the maximum current ?max  when...
Consider a simple series RLC circuit with the following values for the resistance, inductance, and capacitance:...
Consider a simple series RLC circuit with the following values for the resistance, inductance, and capacitance: R = 110 Ω (ohms), L = 1 H (henries), and C = 0.001 F (farads). Furthermore, a battery provides an external voltage, e(t), into the circuit equal to 7 However, this external voltage e(t) is not always flowing into the circuit. Initially, the switch for the circuit is open and there is no charge or current flowing through the circuit. At time t...
3. In a RC circuit in series with continuous current, the time constant is the quotient...
3. In a RC circuit in series with continuous current, the time constant is the quotient of the capacitance between the resistance. True or false?
A series RLC circuit has inductance L = 12 mH, capacitance C = 1.6 ?F, and...
A series RLC circuit has inductance L = 12 mH, capacitance C = 1.6 ?F, and resistance R = 1.5 ? and begins to oscillate at time t = 0. a)       At what time t will the amplitude of the charge oscillations in the circuit be 50% of its initial value? (Note that we do not know that initial value.) b)      How many oscillations are completed within this time?
An L-R-C series circuit has a source with voltage amplitude 35.0 V and angular frequency 1.30×103rad/s.1.30 ...
An L-R-C series circuit has a source with voltage amplitude 35.0 V and angular frequency 1.30×103rad/s.1.30 × 103 rad/s. The resistance is 275 ΩΩ, the inductance is 82.3 mH, and the capacitance is 1.10 μF1.10 μF. Find (a) the inductive and capacitive reactances, (b) the phase angle, and (c) the power factor.