Question

A proton (m = 1.67 x 10-27 kg) travels a distance of 4.3 cm parallel to...

A proton (m = 1.67 x 10-27 kg) travels a distance of 4.3 cm parallel to a uniform electric field 2.3 x105 V/m between the plates shown in the figure. If the initial velocity is 1.9 x 105 m/s, find the magnitude of its final velocity in m/s. (* Ignore gravity)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with...
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with constant velocity enters a region containing a constant magnetic field that is directed along the z-axis at (x,y) = (0,0) as shown. The magnetic field extends for a distance D = 0.75 m in the x-direction. The proton leaves the field having a velocity vector (vx, vy) = (3.9 X 105 m/s, 1.9 X 105 m/s). 1)What is v, the magnitude of the velocity...
A proton (q = 1.60×10−19 C , m = 1.67×10−27 kg )moves in a uniform magnetic...
A proton (q = 1.60×10−19 C , m = 1.67×10−27 kg )moves in a uniform magnetic field B⃗ =( 0.530 T )i^. At t = 0 the proton has a velocity components vx = 1.60×105 m/s , vy=0, and vz = 1.90×105 m/s . What is the magnitude of the magnetic force acting on the proton? What is the direction of the magnetic force acting on the proton? In addition to the magnetic field there is a uniform electric field...
A proton of mass mp=1.67×10−27 kgm​p​​=1.67×10​−27​​ kg and a charge of qp=1.60×10−19 Cq​p​​=1.60×10​−19​​ C is moving...
A proton of mass mp=1.67×10−27 kgm​p​​=1.67×10​−27​​ kg and a charge of qp=1.60×10−19 Cq​p​​=1.60×10​−19​​ C is moving through vacuum at a constant velocity of 10,000 m/s10,000 m/s directly to the east when it enters a region of uniform electric field that points to the south with a magnitude of ∣E⃗∣=∣​E​⃗​​∣=2520 N/C N/C . The region of uniform electric field is 5 mm wide in the east-west direction. How far (in meters) will the proton have been deflected towards the south by...
A beam of protons (proton mass is 1.67 x 10 -​ 27 kg) moves at 3...
A beam of protons (proton mass is 1.67 x 10 -​ 27 kg) moves at 3 x 10 5​ m/s through a uniform magnetic field with magnitude 2 T. The magnetic field has exactly equal components along the positive ​y and negative ​x axes and no component along the ​z axis. The velocity of each proton lies in the ​xz-​ plane at an angle of 30 0​ ​to the​ z-​ axis. (a) Write the magnetic field ​B and the velocity...
A proton (m = 1.67 x 10-27 kg) is placed a distance y above a long,...
A proton (m = 1.67 x 10-27 kg) is placed a distance y above a long, horizontal wire of linear charge density λ. The proton is then released from rest. If the magnitude of the initial acceleration of the proton is 0.52 x 10+7 m/s2, what is the value of λ (in C/m)? Take y = 40cm.
An proton (mass=1.67*10^-27 kg) is accelerated in the uniform field E (E=1.70*10^4 N/C) between two parallel...
An proton (mass=1.67*10^-27 kg) is accelerated in the uniform field E (E=1.70*10^4 N/C) between two parallel charged plates. The separation of the plates is 2.30 cm. The proton is acerbated from the rest near the positive plate and crashes into the negative plate. With what speed does it crash into the negative plate?
A proton, with mass 1.67 × 10-27 kg and charge +1.6 × 10-19 C, is sent...
A proton, with mass 1.67 × 10-27 kg and charge +1.6 × 10-19 C, is sent with velocity 7.1 × 104 m/s in the +x direction into a region where there is a uniform electric field of magnitude 730 V/m in the +y direction. What are the magnitude and direction of the uniform magnetic field in the region, if the proton is to pass through undeflected? Assume that the magnetic field has no x-component and neglect gravitational effects. Draw a...
Chapter 7, Problem 1. A proton (mass m = 1.67 × 10-27 kg) is being accelerated...
Chapter 7, Problem 1. A proton (mass m = 1.67 × 10-27 kg) is being accelerated along a straight line at 5.40 × 1013 m/s2 in a machine. If the proton has an initial speed of 6.20 × 105 m/s and travels 2.40 cm, what then is (a) its speed and (b) the increase in its kinetic energy?
A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...
A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 3.31 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 2560 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 5.15 V/m, (b)...
A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative...
A proton travels through uniform magnetic and electric fields. The magnetic field is in the negative x direction and has a magnitude of 2.14 mT. At one instant the velocity of the proton is in the positive y direction and has a magnitude of 1560 m/s. At that instant, what is the magnitude of the net force acting on the proton if the electric field is (a) in the positive z direction and has a magnitude of 4.35 V/m, (b)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT