Question

A 1.5-cm-tall object is 90 cm in front of a converging lens that has a 32...

A 1.5-cm-tall object is 90 cm in front of a converging lens that has a 32 cm focal length.

Calculate the image position.

Calculate the image height.

Express your answer to two significant figures and include the appropriate units.

Homework Answers

Answer #1

(a) Write the expression of basic lens equation -  

1/p + 1/q = 1/f

where -

p = object distance = +90 cm
q = image distance
f = focal length = + 32 cm

put the values -

1/90 + 1/q = 1/32

1/q = 1/32 - 1/90 = 0.02014

=> q = 49.6 cm = 50.0 cm

Therefore, the image is 50.0 cm behind the converging lens (the sign convention for converging lenses is that positive image distances are behind the lens; positive object distances are in front of the lens)

(b) Again, the magnification is given by m = -q/p =- 49.6 / 90 = -0.55

So, image height = -0.55 x 1.5 = - 0.825 cm = -0.83 cm

The negative sign shows that the image is inverted.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A converging lens with a focal length of 60 cm and a diverging lens with a...
A converging lens with a focal length of 60 cm and a diverging lens with a focal length of -70 cm are 310 cm apart. A 2.7-cm-tall object is 80 cm in front of the converging lens. Calculate the distance between the final image and the diverging lens. Express your answer to two significant figures and include the appropriate units. Calculate the image height. Express your answer to two significant figures and include the appropriate units.
A 15-cm-focal-length converging lens is 19 cm to the right of a 7.0-cm-focal-length converging lens. A...
A 15-cm-focal-length converging lens is 19 cm to the right of a 7.0-cm-focal-length converging lens. A 1.6-cm-tall object is distance L to the left of the first lens. For what value of L is the final image of this two-lens system halfway between the two lenses? Express your answer to two significant figures and include the appropriate units. What is the height of the final image? Express your answer to two significant figures and include the appropriate units. What is...
Two converging lenses with focal lengths of 50 cm and 22 cm are 13 cm apart....
Two converging lenses with focal lengths of 50 cm and 22 cm are 13 cm apart. A 2.0-cm-tall object is 25 cm in front of the 50-cm-focal-length lens. Part A Calculate the distance between the image and 22-cm-focal-length lens. Express your answer to two significant figures and include the appropriate units. Part B Calculate the image height. Express your answer to two significant figures and include the appropriate units.
A 1.0 cm tall object is 2.0 cm in front of a converging lens with a...
A 1.0 cm tall object is 2.0 cm in front of a converging lens with a focal length of 3.0 cm. A. Determine the image position and height by using ray tracing to find image B. Calculate the image position and height
A 4.0-cm-tall object is 15 cm in front of a converging lens that has a 28...
A 4.0-cm-tall object is 15 cm in front of a converging lens that has a 28 cm focal length. Calculate the image position.Calculate the image height. Help plz!
A 15-cm-focal-length converging lens is 19 cm to the right of a 7.0-cm-focal-length converging lens. A...
A 15-cm-focal-length converging lens is 19 cm to the right of a 7.0-cm-focal-length converging lens. A 1.6-cm-tall object is distance L to the left of the first lens. Part A For what value of L is the final image of this two-lens system halfway between the two lenses? Express your answer to two significant figures and include the appropriate units. L L = Part B What is the height of the final image? Express your answer to two significant figures...
Two converging lenses with focal lengths of 40 cm and 20 cm are 16 cm apart....
Two converging lenses with focal lengths of 40 cm and 20 cm are 16 cm apart. A 4.0 cm -tall object is 12 cm in front of the 40 cm -focal-length lens. Calculate the image position. Express your answer using two significant figures. Calculate the image height. Express your answer using two significant figures.
Two converging lenses with focal lengths of 40 cm and 20 cm are 16 cm apart....
Two converging lenses with focal lengths of 40 cm and 20 cm are 16 cm apart. A 3.0 cm -tall object is 11 cm in front of the 40 cm -focal-length lens. Part A- Calculate the image position. Express your answer using two significant figures. Part B Calculate the image height. Express your answer using two significant figures.
A converging lens forms an image of an 8.50 mm -tall real object. The image is...
A converging lens forms an image of an 8.50 mm -tall real object. The image is 12.5 cm to the left of the lens, 3.50 cm tall, and upright. A) What is the focal length of the lens? Express your answer in centimeters to three significant figures. B) Where is the object located? Express your answer in centimeters to three significant figures.
A 2.00-cm-tall object is located 18.0 cm in front of a converging lens with a focal...
A 2.00-cm-tall object is located 18.0 cm in front of a converging lens with a focal length of 30.0 cm. (a) Use the lens equation and (b) a ray diagram to describe the type, location, and height of the image that is formed.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT