Question

An ideal L-C circuit (zero resistance) includes an inductor with inductance L and a capacitor with...

An ideal L-C circuit (zero resistance) includes an inductor with inductance L and a capacitor with capacitance C, maximum charge on the capacitor Q, and a oscillation period T. If we change out the inductor for one with an inductance 4L, and we reduce the maximum charge on the capacitor to Q/2, what is the new period of the L-C circuit?

Homework Answers

Answer #1

We know the oscillation period of an LC circuit is given by

Now, in the second case, the inductance is increased to 4L.

Also, the maximum charge across the capacitor has been reduced to Q/2, but this does not affect the capacitance of the capacitor as capacitance depends on Area of plates and the distance between them and not on the charge. ()

Thus, the new period will be

Thus, the new period will be (1/2)times the old period.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An L-C circuit containing an 88.0-mH inductor and a 1.70-nF capacitor oscillates with a maximum current...
An L-C circuit containing an 88.0-mH inductor and a 1.70-nF capacitor oscillates with a maximum current of 0.800 A Calculate the maximum charge on the capacitor. Calculate the oscillation frequency of the circuit Assuming the capacitor had its maximum charge at time t= 0, calculate the energy stored in the inductor after 2.60 ms of oscillation.
A circuit is constructed with an AC generator, a resistor, capacitor and inductor as shown. The...
A circuit is constructed with an AC generator, a resistor, capacitor and inductor as shown. The generator voltage varies in time as ε = Va - Vb = εmsinωt, where εm = 24 V and ω = 199 radians/second. At this frequency, the circuit is in resonance with the maximum value of the current Imax = 0.63 A. The capacitance C = 180μF. The values for the resistance R and the inductance L are unknown. a) What is L, the...
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
A capacitor is fully charged and then connected in series to an inductor with zero resistance...
A capacitor is fully charged and then connected in series to an inductor with zero resistance wires. This is an ideal L-C circuit that will oscillate the current direction. Explain HOW and WHY this circuit oscillates and discuss energy conservation in this oscillation behavior. Your response should be at least 3 paragraphs to show your mastery of the concepts.
In an L-R-C series circuit, the resistance is 600 ?, the inductance is 440 mH and...
In an L-R-C series circuit, the resistance is 600 ?, the inductance is 440 mH and the capacitance is 4.00 ?F. At resonance, the rms current through the circuit is 0.120 A. (A) Find the resonance frequency f0 of the circuit. [4] (B) Find the rms voltage of the source. [4] (C) Find the rms voltage across the capacitor at resonance. [6] (D) Find the rms voltage across the inductor at resonance.
1. Set L = 5 mH, C = 8 µF, R = 0 Ω, and Q...
1. Set L = 5 mH, C = 8 µF, R = 0 Ω, and Q = 2E-6 C. Measure the maximum current through the circuit, and the period of the oscillation. Now increase the inductance of the inductor by 50% to 7.5 mH calculate max current = ________ A   period T = ________ s. 2. Reset to L = 5 mH, C = 8 µF, keep R = 0 Ω, and Q = 2E-6 C. Keeping the charge on the...
An L-C circuit consists of a 69.5-mH inductor and a 240-µF capacitor. The initial charge on...
An L-C circuit consists of a 69.5-mH inductor and a 240-µF capacitor. The initial charge on the capacitor is 5.95 µC, and the initial current in the inductor is zero. (a) What is the maximum voltage across the capacitor? __________ V (b) What is the maximum current in the inductor? __________ A (c) What is the maximum energy stored in the inductor? __________ J (d) When the current in the inductor has half its maximum value, what is the charge...
LC circuit with self-inductance 0.1mH and capacitance of 4microF. t=0 the capacitor has it max charge...
LC circuit with self-inductance 0.1mH and capacitance of 4microF. t=0 the capacitor has it max charge of 12 microC and it start discharge. What will be the angular frequency of the oscillation in the circuit. How long will it take to completely discharge Find the max current flowing through the circuit How will the charge in the capacitor change
Suppose you have an RLC series circuit constructed using a resistor with a non-zero resistance, an...
Suppose you have an RLC series circuit constructed using a resistor with a non-zero resistance, an inductor with non-zero inductance, a capacitor with non-zero capacitance, and for which the voltage lags the current. How could you get this circuit to resonance by varying only the capacitance of the capacitor (it’s a variable capacitor)? Group of answer choices a) Decrease the capacitance of the capacitor. b) Increase the capacitance of the capacitor. c) Actually, only varying the capacitance of the capacitor...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT