Question

An electron and a positron, each with a kinetic energy of 2.50 MeV, annihilate, creating two...

An electron and a positron, each with a kinetic energy of 2.50 MeV, annihilate, creating two photons that travel away in opposite directions.What is the frequency of each photon?

Homework Answers

Answer #1

Here,

The kinetic energy is,

K.E= 2.50 MeV

Then,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron...
In a head-on collision of an electron of kinetic energy of 2.044 MeV with a positron at rest, the two particles are replaced by two photons of equal energy. If each photon is traveling at an angles θ with respect to the electron’s direction of motion, What is the energy E, momentum p (you can leave the answer in terms of c) and angle of θ of each photon? (For electron and positron mc2 = 0.511 MeV)
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or...
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or approximately 8.2×10-14 J . When an electron and a positron are both stationary and located next to each other during an annihilation process, their mass energy converts to electromagnetic energy released as photons, electromagnetic particles that have momentum but no mass and that travel at the speed of light. What is the minimum number of photons that could be released, and how much energy...
An electron and positron (anti-electron) has rest energy 0.5 MeV. The two electron and positron traveling...
An electron and positron (anti-electron) has rest energy 0.5 MeV. The two electron and positron traveling in opposite direction at a speed of 0.99999*ccollide to form a new particle with a huge mass in the lab. A) What is the total energy of the two particles?   B) What is their Kinetic energy at that speed? C) What is the momentum of the two particles? D) What is the rest mass of the new particle discovered?
An electron and a positron are moving toward each other with equal speeds of 3 x...
An electron and a positron are moving toward each other with equal speeds of 3 x 106 m/s. The two particles annihilate each other and produce two photons of equal energy. (a) Do you need to use relativity for this problem? Support your answer numerically, and comment intelligently. (b) What were the deBroglie wavelengths of the electron and positron? (c) Find the energy of each photon. (d) Find the momentum of each photon. (e) Find the wavelength of each photon.
In the medical diagnostic technique known as positron emission tomography (PET), a positron and an electron...
In the medical diagnostic technique known as positron emission tomography (PET), a positron and an electron annihilate each other and two γ–ray photons are emitted. What is the angle between the momentum vectors of the two photons? a. Zero degrees b. 45° c. Any angle is possible d. 90° e. 180°
In Quantum Mechanics there's an interesting phenomenon where an electron and a positron collide. Since these...
In Quantum Mechanics there's an interesting phenomenon where an electron and a positron collide. Since these are antiparticles of each other, when they collide they annihilate and produce two equal energy photons. Why must this interaction produce two photons as opposed to one? Use some math in your logic.
What is the speed of an electron whose kinetic energy is 1.80 MeV ?
What is the speed of an electron whose kinetic energy is 1.80 MeV ?
2. A positron is the anti-particle of an electron. It has exactly the same mass as...
2. A positron is the anti-particle of an electron. It has exactly the same mass as an electron but the opposite electric charge. Prove, using conservation of energy and momentum that it is impossible for an electron and positron to be formed from the "decay" of a single (high-energy) photon. (Note: this process can occur in the presence of other particles).
In the mercury atom, an electron is in the Ec energy level. Two photons are incident...
In the mercury atom, an electron is in the Ec energy level. Two photons are incident upon the electron. Photon 1 has a frequency of 5.28E14 Hz, and Photon 2 has a frequency of 4.37E14 Hz. a. Calculate which photon will be absorbed, and calculate the new energy level of the electron. Photon # (blank) will be absorbed. The new energy level is (blank). b. Calculate all the possible photon frequencies that the electron can emit to get back down...
A electron is accelerated to a kinetic energy of 100 MeV at the end of a...
A electron is accelerated to a kinetic energy of 100 MeV at the end of a linac and then drifts 1.45 m to a target in the laboratory a) What is the distance from the end of the linac to the target in the rest frame of the electron? b) As measured in the laboratory, what is the velocity of the electron and how much time does it take for the electron to hit the target after it exits the...