Question

Water has a specific heat that is 10 times greater than that of copper. A 5.0-kg...

Water has a specific heat that is 10 times greater than that of copper. A 5.0-kg block of copper that is initially at 50 oC is placed in 1.0 kg of water that is initially at 20 oC. The copper and water are in a thermally isolated container. When the copper and water come to thermal equilibrium, what is the temperature?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In this question, assume that the specific heat of water is 4 ×10^3 J/(kg degrees C)...
In this question, assume that the specific heat of water is 4 ×10^3 J/(kg degrees C) and the latent heat of vaporization pf water is 2X10^6 J/Kg. If we mix 1.0 kg of water at 0 oC with 0.01 kg of steam at 100 oC, when the mixture comes to thermal equilibrium. A: a mixture of steam and water at 100 degrees C B: All water at a temperature greater than 50 degrees C C: All water at a temperature...
Part A A copper pot of mass 2.5 kg contains 5.2 litres of water (i.e. 5.2...
Part A A copper pot of mass 2.5 kg contains 5.2 litres of water (i.e. 5.2 kg) at room temperature (200C). An iron block of mass 9.4 kg is dropped into the water and when the system comes into thermal equilibrium, a temperature of 380C is measured. What is the initial temperature of the iron block? Give your answer in oC to three significant figures. Part B Iron has a specific heat that is larger than that of copper. A...
The specific heat of a 90 g block of material is to be determined. The block...
The specific heat of a 90 g block of material is to be determined. The block is placed in a 25 g copper calorimeter that also holds 60 g of water. The system is initially at 20°C. Then 129 mL of water at 80°C are added to the calorimeter vessel. When thermal equilibrium is attained, the temperature of the water is 54°C. Determine the specific heat of the block.
The specific heat of a 103 g block of material is to be determined. The block...
The specific heat of a 103 g block of material is to be determined. The block is placed in a 25 g copper calorimeter that also holds 60 g of water. The system is initially at 20°C. Then 122 mL of water at 80°C are added to the calorimeter vessel. When thermal equilibrium is attained, the temperature of the water is 54°C. Determine the specific heat of the block.
The specific heat of a 97 g block of material is to be determined. The block...
The specific heat of a 97 g block of material is to be determined. The block is placed in a 25 g copper calorimeter that also holds 60 g of water. The system is initially at 20°C. Then 112 mL of water at 80°C are added to the calorimeter vessel. When thermal equilibrium is attained, the temperature of the water is 54°C. Determine the specific heat of the block.0000000 _______cal/g·K
Finding the equilibrium temperature of a mixture: An isolated thermal system consists of a copper container...
Finding the equilibrium temperature of a mixture: An isolated thermal system consists of a copper container filled with a quantity of liquid water and a quantity of ice. What is the fully thermalized state of the system (the final temperature, how much water, and how much ice) provided that initially there is 1.0 kg of ice at -100 degrees Celsius, 10 kg of water at 1 degrees Celsius, and the copper container has the mass of 15.0 kg and is...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 215 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 16.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘ What will be the equilibrium temperature when a 215 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 875 g of water at 12.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘,and for...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘,and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 275 g block of copper at 255 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 16.0 ∘C?
The value of specific heat for copper is 390 J/kg?C?, for aluminun is 900 J/kg?C?, and...
The value of specific heat for copper is 390 J/kg?C?, for aluminun is 900 J/kg?C?, and for water is 4186 J/kg?C?. What will be the equilibrium temperature when a 215 g block of copper at 255 ?C is placed in a 155 g aluminum calorimeter cup containing 875 g of water at 16.0 ?C?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT