Question

A uniform disk of radius 0.529 m and unknown mass is constrained to rotate about a...

A uniform disk of radius 0.529 m and unknown mass is constrained to rotate about a perpendicular axis through its center. A ring with same mass as the disk\'s is attached around the disk\'s rim. A tangential force of 0.223 N applied at the rim causes an angular acceleration of 0.103 rad/s2. Find the mass of the disk.

Homework Answers

Answer #1

Here, a ring has been attached around the rim of the disk, and has a mass same as that of the disk. Now, we know that a force of 0.223 N produces and acceleration of 0.103 rad/s^2

That is a total torque of FxR = 0.223 x 0.529 = 0.117967 N-m produces the given acceleration

We know that, angular acceleration = Torque / Moment of inertia

That is, moment of inertia of the system = Torque / acc = 0.117967 / 0.103 = 1.1453 Kg-m2

Also, the inertia for a disk is given as MR2/2 where as that for a ring is MR2. For the given two masses, mass and radii are same.

hence, MR2 + MR2/2 = 3 x M x R2 / 2 = 1.1453

or, M = 1.145 x 2 / 3 x 0.529 x 0.529 = 2.728 Kg

Therefore the required mass is 2.728 Kgs

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A flat uniform circular disk (radius = 3.00 m, mass = 1.00 ✕ 102 kg) is...
A flat uniform circular disk (radius = 3.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a frictionless axis perpendicular to the center of the disk. A 50.0 kg person, standing 1.75 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.60 m/s relative to the ground. Find the resulting angular speed of the disk (in...
A flat uniform circular disk (radius = 5.44 m, mass = 320 kg) is initially stationary....
A flat uniform circular disk (radius = 5.44 m, mass = 320 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a frictionless axis perpendicular to the center of the disk. A 66.4-kg person, standing 2.40 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.97 m/s relative to the ground. Find the magnitude of the resulting angular speed (in rad/s) of the...
Point Pis on the rim of a large Spinning Disk of mass 10.0 kg and radius...
Point Pis on the rim of a large Spinning Disk of mass 10.0 kg and radius 2.58 m. At time t=0.00 s the disk has an angular velocity of 4.00 rad/s and rotates counterclockwise about its center O, and Pis on the x-axis. A net applied CW torque of 20.0 m-N causes the wheel to undergo a uniform angular acceleration. The magnitude of the total acceleration (m/s2) at point Pwhen t = 15.0 s is? The angular velocity of the...
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a...
A uniform disk of mass Mdisk = 4 kg and radius R = 0.24 mhas a small block of mass mblock = 2.2 kg on its rim. It rotates about an axis a distance d = 0.16 m from its center intersecting the disk along the radius on which the block is situated. What is the moment of inertia of the block about the rotation axis? What is the moment of inertia of the disk about the rotation axis? When...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm rests with its flat surface on a frictionless table (i.e., the axis of the cylinder is perpendicular to the table.) The diagram shows a top view. A string is wrapped around the rim of the disk and a constant force of F = 10.8 N is applied to the string. The string does not slip on the rim. 1) What is the acceleration of...
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at...
A disk with mass m = 10.3 kg and radius R = 0.34 m begins at rest and accelerates uniformly for t = 16.8 s, to a final angular speed of ω = 26 rad/s. 1) What is the angular acceleration of the disk? rad/s2 2) What is the angular displacement over the 16.8 s? rad 3) What is the moment of inertia of the disk? kg-m2 4) What is the change in rotational energy of the disk? J 5)...
A cockroach of mass m lies on the rim of a uniform disk of mass 8.00m...
A cockroach of mass m lies on the rim of a uniform disk of mass 8.00m that can rotate freely about its center like a merry-go-round. Initially, the cockroach and disk rotate together with an angular velocity of 0.230 rad/s. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? ________________ rad/s (b) What is the ratio K/K0 of the new kinetic energy of the system to its...
A cockroach of mass m lies on the rim of a uniform disk of mass 7.00m...
A cockroach of mass m lies on the rim of a uniform disk of mass 7.00m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.270 rad/s. Then the cockroach walks half way to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? rad/s (b) What is the ratio K/K0 of the new kinetic energy of the system to its...
A solid cylindrical disk has a radius of 0.19 m. It is mounted to an axle...
A solid cylindrical disk has a radius of 0.19 m. It is mounted to an axle that is perpendicular to the circular end of the disk at its center. When a 40-N force is applied tangentially to the disk, perpendicular to the radius, the disk acquires an angular acceleration of 110 rad/s2. What is the mass of the disk? kg
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at...
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at rest and accelerates uniformly for t = 18.9 s, to a final angular speed of ? = 29 rad/s. a) What is the angular acceleration of the disk? b) What is the angular displacement over the 18.9 s? c) What is the moment of inertia of the disk? d) What is the change in rotational energy of the disk? e) What is the tangential...